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Abstract  

The Tangut script, a lesser-explored dead script comprising numerous characters, has received limited attention in 
deep learning research, particularly in the field of optical character recognition (OCR). Existing OCR studies 
primarily focus on widely used characters like Chinese characters and employ deep convolutional neural networks 
(CNNs) or combinations with recurrent neural networks (RNNs) to enhance accuracy in character recognition. In 
contrast, this study takes a counterintuitive approach to develop an OCR model specifically for the Tangut script. 
We utilize shorter layers with slimmer filters using a depthwise separable convolutional neural network (DSCNN) 
architecture. Furthermore, we preprocess the dataset using a frequency-based transformation, namely the Discrete 
Cosine Transform (DCT). The results demonstrate successful training of the model, showcasing faster 
convergence and higher accuracy compared to traditional deep neural networks commonly used in OCR 
applications. 
Keywords: Tangut script, Optical character recognition, Depthwise separable convolutional neural network, Discrete cosine 
transform 
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1. Introduction  

The Tangut script is a logographic writing system that 
was created in the 11th century by the Tangut people, a 
non-Han ethnic group that lived in what is now Gansu 
and Ningxia provinces in China. The Tangut script was 
based on the Chinese writing system, but it was 
significantly modified to reflect the sounds and grammar 
of the Tangut language [1]. The Tangut script was used 
for writing official documents, religious texts, and other 
materials until the fall of the Tangut empire in 1227 [2]. 
After that, the Tangut script fell into disuse and was 
eventually forgotten. 

The Tangut script is a very complex writing system with 
over 6,000 characters. The characters are made up of a 
combination of strokes, which can be arranged in 
different ways to represent different sounds. The Tangut 
script is written top-to-bottom in lines and from right to 
left, and the characters are usually arranged in columns 
[3]. The characters are pronounced using a system of 
tones, which are similar to the tones used in Chinese. 
The Tangut language also has a number of unique 
grammatical features that distinguish it from Chinese. 

The Tangut language is a tonal language, which means 
that the meaning of a word can be changed by changing 
the tone of its pronunciation. There are four tones in 
Tangut: high, rising, falling, and level. The Tangut 
language is also an agglutinative language, which means 
that words are formed by adding prefixes, suffixes, and 
infixes to a root word. This is in contrast to Chinese, 
which is a fusional language [4][5][6]. 

The reading of Tangut script involves analyzing the 
characters in terms of their semantic and phonetic 
components. The semantic component provides clues 
about the meaning of the character, while the phonetic 
component offers insights into its pronunciation. The 
grammar of the Tangut language is distinct from 
standard Chinese, featuring its own syntactic rules, word 
order, and grammatical structures [7][8]. 

The Tangut script exhibits distinctive features compared 
to the contemporary Chinese script. It is known for its 
complex characters, often comprising a greater number 
of strokes than those found in the standard Chinese 
scripts of the time. The Tangut characters are more 
elaborate and intricate, featuring a combination of 
strokes, curves, and intricate shapes. The visual 
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complexity of the Tangut script poses unique challenges 
for optical character recognition systems due to the 
intricacies involved in accurately recognizing and 
distinguishing these characters [9][10]. 

Previous studies have employed Deep Convolutional 
Neural Networks (DCNN) with four convolution layers 
to develop a Tangut character recognition system. This 
system was trained on a dataset containing over 100,000 
labeled Tangut images and focused on recognizing the 
first 1,000 high-frequency Tangut characters [11]. The 
DCNN network was also utilized to automatically 
extract Tangut characters, enabling automated script 
annotation without manual intervention [12]. Other 
researchers have explored the use of Convolutional 
Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs), as well as their derivatives such as 
Region-based CNN (RCNN) [13], Faster RCNN [14], 
and Bidirectional Long Short-Term Memory (Bi-
LSTM) [15], for the recognition of more commonly 
encountered Chinese characters, including standard 
Chinese [16] and handwritten forms [17]. Furthermore, 
previous investigations have suggested that wider 
convolution networks with larger filters and shallower 
layers may lead to improved performance [18]. 

In this study, a different approach to optical character 
recognition (OCR) for Tangut script is proposed. Instead 
of increasing the depth of the neural network, a strategy 
involving shorter and slimmer layers is employed, 
accompanied by preprocessing the dataset. The dataset 
consists of three types of preprocessed input data: raw 
data, Fourier-based transformed data, and Discrete 
Cosine-based transformed data. The comprehensive set 
of Tangut characters is obtained from Google Noto 
fonts, and each character is augmented with 20 different 
variations. Annotation of each character class is 
performed based on the associated Unicode code. 
Surprisingly, the experimental results demonstrate 
outstanding performance, as the minimalist model 
surpasses the performance of deeper networks. 

2. Research Methods 

2.1. Tangut Script Dataset 

The Tangut characters are assigned a specific Unicode 
block, U+17000–U+187F7, encompassing a total of 
6,136 characters [19]. The inclusion of Tangut script in 
the Unicode Standard occurred in June 2014, coinciding 
with the release of version 7.0 of the standard, 
highlighting the growing recognition and importance of 
this ancient script in digital contexts. 

To facilitate the training and evaluation of the OCR 
model, a dataset comprising Tangut script characters 
was prepared. All the characters used in this research 
were extracted from the Google NotoSerifTangut-
Regular font. In order to enhance the model's robustness 

and generalization, all characters were augmented to 
create 20 different variations. This augmentation 
involved applying random distortions, rotations, and 
zoom levels to the characters. The dataset was split 
evenly, with half of the augmented characters used for 
training the OCR model and the remaining half for 
testing, enabling accurate evaluation of the model's 
performance on unseen Tangut script characters. 

2.2. Depthwise Separable Convolutional Neural 
Network 

The Depthwise Separable Convolutional Neural 
Network (DSCNN) is a refined CNN layer that 
optimizes the convolutional operation by decomposing 
it into two smaller convolutions: depthwise convolution, 
which operates on individual input channels 
independently, and pointwise convolution, which 
combines the resulting output channels. This technique 
effectively accelerates the convolution process, 
enhancing computational efficiency [20]. 

 
Figure 1. Depthwise Separable Convolutional Neural Network 

calculation step. 

Instead of performing the conventional full-fledged 
convolution calculation, where a matrix M is convolved 
directly with a kernel k resulting in M′	 =	M*k, the 
depthwise separable convolution approach divides the 
convolution process into separate steps. As illustrated in 
Figure 1, the first step involves depthwise convolution, 
where three distinct kernel matrices are convolved 
individually with their assigned channels. This results in 
three separate channels. Subsequently, the values of 
each channel are mixed using a vector kernel in the 
pointwise convolution, resulting in a single matrix. This 
process can be scaled up to produce multiple diverse 
results based on different combinations of kernels. We 
can summarize this process using the following formula: 
M′	=	[MR*kR,	MG*kG,	MB*kB]*kp, where kR, kG, kB, and kp 
represent the kernel matrices for the red, green, and blue 
channels, as well as the overall pointwise convolution 
process, respectively. 

2.3. Frequency Domain 

The frequency domain serves as a means of representing 
a signal by its constituent frequency components. 
Analyzing signals in the frequency domain involves 
converting them from the time domain to the frequency 
domain using mathematical techniques like the Fourier 
Transform and the Discrete Cosine Transform. It 
provides valuable insights into the frequency 
composition of a signal, which may not be readily 
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discernible from its representation in the time domain. 
This conversion enables the extraction of valuable 
information about the signal's frequency content and 
distribution. Unlike the time domain representation, 
where signals are described in terms of their amplitude 
variations over time, the frequency domain reveals the 
specific frequencies present in the signal and their 
respective magnitudes. 

The Fourier Transform is a mathematical operation that 
decomposes a signal into a sequence of sine and cosine 
functions of different frequencies. Formula (1) shows 
the calculation of Fourier Transform. By applying the 
Fast Fourier Transform (FFT), we can obtain a sequence 
of complex numbers representing the signal's frequency 
domain. However, this complex number representation 
poses certain challenges. Firstly, it doubles the amount 
of data, increasing computational requirements. 
Additionally, deep learning networks didn't differentiate 
between the real and imaginary components of complex 
numbers. To address these issues and enhance 
simplicity, a specific scheme is employed. After the data 
is converted into its Fourier representation, only the real 
values of the converted Fourier Transform are utilized. 

 
In this formula, x represents the input signal, X 
represents the transformed signal (complex numbers), k 
represents the frequency bin index ranging from 0 to N-
1, n represents the time-domain sample index ranging 
from 0 to N-1, and N represents the length of the input 
signal. 

The Discrete Cosine Transform (DCT) is a member of 
the Fourier Transform family, specifically designed to 
decompose a signal into a sequence of cosine functions. 
The calculation of the DCT can be represented by 
Equation (2). Unlike the Fourier Transform, the DCT 
produces a representation that consists entirely of real 
numbers. This characteristic makes the DCT 
representation more straightforward and easier to 
interpret. Notably, the structure of the converted DCT 
data is distinctive, typically beginning with a larger 
magnitude coefficient followed by mostly smaller 
coefficients. 

 
In this formula, xn represents the input signal, Xk 
represents the k-th coefficient in the resulting DCT 
sequence, k represents the frequency bin index ranging 
from 0 to N-1, n represents the time-domain sample 
index ranging from 0 to N-1, and N represents the length 
of the input signal. 

 
Figure 2. Random Sampling of Tangut Script Characters from 

Dataset. 

Figure 2 displays a random sampling of the augmented 
Tangut script characters extracted from the dataset. In 
Figure 3, the Tangut script characters are converted into 
their Discrete Cosine domain representation. Notably, 
the upper left portion of the converted data exhibits 
significantly higher magnitude values in comparison to 
the remaining portions. 

 
Figure 3. Random Sampling of Tangut Script Characters Converted 

into Discrete Cosine Domain using DCT. 

2.4. Architecture 

In this research, we constructed a model consisting of 
two distinct types of architecture: a multi-layer design, 
and a minimalist layer design. Common intuition 
suggests that deeper architectures tend to exhibit 
superior performance in object recognition tasks. While 
this holds true for complex objects present in natural 
images, it may not necessarily apply to the task of optical 
character recognition (OCR). Unlike natural objects, 
characters in OCR typically consist of simple 
monochromatic strokes in black and white. 

Wide convolutional layers have the potential to 
accelerate convolutions by utilizing fewer, but thicker 
layers with an increased number of kernels per layer. 
This technique proves effective as the addition of more 
convolutional layers can significantly slow down the 
model. Interestingly, it is possible to further expedite this 
process by employing slimmer kernels. Therefore, in 
this study, we systematically reduced the number of 
layers in the model, one at a time, to investigate their 
impact on accuracy. Additionally, we closely monitored 
the convergence rate of each model to assess the 
effectiveness of these layer adjustments. 

Table 1. Model’s architectures and specifications. 

Layer(s) Number 
Layer Input Pooling Combination Model 

Number 
Multi 3 Raw Yes SC2PSC4P 1 
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SC16P 

No 
SC2SC4SC16 2 

2 SC2SC4 3 

Minimalist 1 

Raw 

No SC2 

4 
Fourier 
(Raw) 

5 

DCT 6 
DCT 

(Low-Freq) 
7 

DCT 
(High-Freq) 

8 

 

In this study, we employed a specific naming convention 
to represent the configurations of the models. The 
abbreviation "SC" denotes the Depthwise Separable 
Convolutional Neural Network (DSCNN) layer, while 
"P" refers to the Pooling layer. Therefore, a label such as 
"SC2PSC4P" indicates a model with one layer of 
DSCNN using 2 filters, followed by a Pooling layer, 
another layer of DSCNN using 4 filters, and finally 
another Pooling layer. All models in this research were 
connected to a flattened layer and converged directly 
into softmax dense nodes, representing the probabilities 
of different character classes. 

Table 1 shows the model’s architectures and 
specifications utilized in this study. The first and second 
models utilized a more extensive layer design, 
consisting of three layers, with one incorporating a 
Pooling layer and the other without it. The third model 
was a simplified version, comprising only two layers 
without a Pooling layer. These three models can be 
categorized as multi-layer models. 

On the other hand, the remaining models were 
minimalist models, consisting of a single layer with only 
two filters. The distinction among these models lies in 
the type of input they were fed: raw data, Fourier-based 
representation data, or Discrete Cosine-based 
representation data. The fourth model is referred to as 
"SC2," while the fifth model is known as "Real Fourier-
based SC2" or "RFSC2." The sixth, seventh, and eighth 
models were fed with Discrete Cosine-based 
representation data. The sixth model received input from 
all frequencies of the DCT-transformed data, hence 
referred to as "DCT All frequency-based SC2" or 
"DASC2." The seventh model utilized low-frequency 
components and is referred to as "DCT Low frequency-
based SC2" or "DLSC2." Lastly, the eighth model 
utilized high-frequency components and is denoted as 
"DCT High frequency-based SC2" or "DHSC2." 

3. Results and Discussion 

In the results section of our study, we observed that the 
inclusion of a pooling layer in the architecture slowed 
down the convergence speed towards achieving small 
loss. Interestingly, architectures without a pooling layer 

reached lower loss faster than those with a pooling layer. 
We believe this effect may be attributed to the size of the 
Tangut script, which has already been resized to a point 
where anti-aliasing is minimized. Further resizing could 
lead to aliasing issues and potential similarity collisions. 
Figure 4 shows overall loss performance of our models. 
The models undergo training for a limited number of 
epochs, and the training data is divided into two separate 
batches. 

Furthermore, our findings revealed that reducing the 
number of layers positively impacted the loss 
performance. Models with fewer layers demonstrated 
improved loss compared to models with a larger number 
of layers. Additionally, models with fewer layers 
reached lower loss levels at a faster rate. This finding is 
particularly advantageous as it allows for the training of 
OCR models for broader character recognition across 
various languages in a shorter period. 

 
Figure 4. Comparative Performance Analysis of 8 Models based on 

Loss. 

In the context of architectures with minimalist layers, it 
is worth noting that the most effective preprocessing 
transformation for script image datasets is the Discrete 
Cosine Transform (DCT), followed by the raw (non-
transformed) data, and then the real-valued Fourier 
Transform. The performance of DCT-based and raw-
based training methods is comparable, while Fourier-
based training is slightly slower. This difference in speed 
may be attributed to the utilization of only the real values 
of the Fourier Transform, disregarding the imaginary 
part. 

Comparing different training approaches, the real-
valued Fourier-based training outperforms both the low-
frequency and high-frequency DCT-based training 
methods. Moreover, the model with pooling layers 
exhibits superior performance compared to these 
individual frequency-based approaches, such as low-
frequency and high-frequency only dataset. Therefore, it 
can be inferred that including all frequencies in the 
training process is beneficial for OCR models, as some 
writing systems contain subtle differences between 
characters that may appear visually similar at first 
glance. 



Agi Prasetiadi1*, Julian Saputra2, Imada Ramadhanti3, Asti Dwi Sripamuji4, Risa Riski Amalia5  
Journal of Dinda: Data Science, Information Technology, and Data Analytics  

Vol. 3 No. 2 (2023) 59 – 64  
 

 
Journal of Dinda : Data Science, Information Technology, and Data Analytics  

Vol . 3 No. 2 (2023) 59 – 64 
63 

 
 

 
Figure 5. Comparative Performance Analysis of 8 Models based on 

Accuracy. 

The overall accuracy performance of all models is 
depicted in Figure 5. Notably, only two models exhibit 
an initial accuracy higher than 20\% during their first 
epoch: namely the minimalist model with raw input data 
and the model trained on DCT transformed data. In 
contrast, the models with multiple layers demonstrate an 
initial accuracy performance close to 0\%. Interestingly, 
all models consistently display a similar trend in their 
accuracy performance as observed in their respective 
loss performance. 

 
Figure 6. Top K Accuracy of 6th Model, DASC2. 

In order to assess the detailed performance of our best 
model, DASC2, we examined its performance against 
the validation data, which accounted for 10\% of the 
training data. Figure 6 presents the results obtained from 
conducting the Top K Accuracy test on the model. 

The Top K Accuracy testing methodology allows us to 
evaluate the model's performance not only based on the 
most probable class prediction but also by considering 
the next k-th most probable classes. For instance, in the 
case of top 3 accuracy, we assess the model's ability to 
correctly predict the class with the highest probability as 
well as the second and third highest probabilities. This 
technique provides insights into the model's 
effectiveness in distinguishing between different script 
classes. Furthermore, we examined the model's 
capability to read the testing dataset, and it was observed 
that the model exhibited signs of overfitting during the 
training process. This implies that diversifying the 
writing styles within each script category in the dataset 
would enhance the model's ability to generalize and 
accurately recognize different script variations. 

As final note, the result also suggests that the 
construction of an optical character recognition model 
does not necessarily require a wider layer format, where 

the number of filters is increased within smaller layers. 
Surprisingly, slimmer layers with only two filters 
yielded exceptionally high accuracy models in our study. 
This indicates that focusing on the simplicity of the 
architecture, rather than the width of the layers, can lead 
to excellent performance. However, it is important to 
note that there are drawbacks associated with this 
technique. The burden of decision-making is primarily 
placed on the dense layer. Overall, our study highlights 
the impact of pooling layers, the benefits of reducing 
layer complexity, and the importance of considering 
simplicity in the design of optical character recognition 
models. 

4.  Conclusion 

In this study, we have trained and tested deep learning 
architectures with multi and minimalist layers for 
reading Tangut script. From our findings, it can be 
concluded that for script reading purposes, the absence 
of a pooling layer may result in better performance in 
terms of loss and accuracy compared to models with a 
pooling layer. Additionally, having fewer layers in the 
architecture also appears to enhance the training 
performance. In the case of the minimalist model, 
employing slimmer layers led to improved classification 
results. However, it is important to note that 
preprocessing of the character image dataset is essential. 
In our experiments, applying the Discrete Cosine 
Transform (DCT) as a preprocessing step yielded better 
performance and faster convergence compared to using 
the raw data. Despite achieving promising results, our 
best model still exhibited overfitting, as it achieved only 
around 90\% reading accuracy on the testing dataset. To 
address this, further efforts should be made to diversify 
the script variation in the dataset, allowing the model to 
generalize better. Moreover, future studies should 
explore the potential of various frequency-based 
transformations as a means to enhance the performance 
of the models. 
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