
Received: 22-01-2025 | Accepted: 05-02-2028 | Published: 08-02-2025
36

Published online on the journal's webpage: http://journal.ittelkom-pwt.ac.id/index.php/dinda

 Journal of Dinda
Data Science, Information Technology, and Data Analytics

 Vol. 5 No. 1 (2025) 36 - 44 E-ISSN: 2809-8064

Optimizing Search Efficiency in Ordered Data: A Hybrid Approach
Using Jump Binary Search

Gabriella Youzanna Rorong1, Syafrial Fachri Pane2, M Amran Hakim Siregar3
1,2Applied Bachelor Program of Informatics Engineering, University of Logistics and Business International

3Computer Science, Information Technology and Actuarial Science, Universitas Mitra Bangsa
1gabriellayouzanna@gmail.com, 2syafrial.fachri@ulbi.ac.id, 3amranhakimsiregar@umiba.ac.id

Abstract

This research presents the development of a hybrid algorithm called Jump Binary Search (JBS), which integrates
jump search and binary search techniques to improve search efficiency in sorted data distributions. JBS is designed
to accelerate the search process using a jump technique to find the target block, after the block is identified, it is
followed by a binary search to narrow down the search space. The results of this study show that the performance
of JBS is superior compared to Jump Linear Search (JLS) when applied to non-uniform and ordered categorical
data distributions. At 400 elements, JBS requires an execution time between 0.008-0.012 ms and at 3200 elements,
JBS maintains efficiency with an execution time of 0.010-0.020 ms. The performance of JBS in handling unsorted
datasets yields interesting results, compared to JLS which experiences a significant increase in execution time. By
minimizing unnecessary data access, JBS becomes the right solution for finding target elements in sorted data
distribution.
Keywords: Jump Search, Binary Search, Linear Search

© 2025 Journal of DINDA

1. Introduction

Data archives play an important role in
organizations, serving to store information [1]. With the
rapid advancement of technology, data archiving has
shifted from traditional paper formats to digital formats,
enabling more efficient data management and retrieval
processes. Digital data archives are organized and
structured effectively, significantly improving the speed
and quality of information retrieval, which en hances
service quality and decision-making processes [2].
Despite these advancements, the challenge of efficiently
searching for data through large volumes of information
remains, especially with traditional search methods that
involve looking one by one.

The inefficiency of manual data collection methods
becomes apparent as the volume of data increases [3].
Search ing for data through archives one record at a time
is not only time-consuming but also prone to errors and
data inconsistencies [4]. Such inefficiencies can cause
delays in accessing important information, which
ultimately affects the performance and responsiveness of
an organization [5]. To address this challenge, the
integration of search algorithms into digital archive
management systems is becoming increasingly

important. These algorithms are designed to streamline
the search process, making it faster.

Among various search algorithms, binary search
stands out due to its efficiency and simplicity [6]. Binary
search performs a search by dividing the data set into
smaller parts, allowing for a targeted search within
sorted data [7]. With a temporal complexity of
O(𝑙𝑜𝑔!𝑛), the binary search method is highly effective
for big data distribution sets [8]. However, its
effectiveness can only be used on sorted data, which
becomes a limitation in certain case studies. With these
limitations, researchers have explored hybrid
algorithms, such as Interpolated Binary Search (IBS),
which combine the advantages of binary search with
interpolation search.

Based on previous research, discussing Interpolated
Bi nary Search (IBS), a method that blends interpolation
search and binary search. This algorithm is designed to
work efficiently on various data distributions, especially
with small to medium-sized data. IBS estimates the
target element’s location using an interpolation
technique, then employs binary search to narrow down
the search space by looking for the desired target [9].

http://journal.ittelkom-pwt.ac.id/index.php/dinda
mailto:1gabriellayouzanna@gmail.com
mailto:2syafrial.fachri@ulbi.ac.id
mailto:3amranhakimsiregar@umiba.ac.id

Gabriella Youzanna Rorong1, Syafrial Fachri Pane2, M Amran Hakim Siregar3
Journal of Dinda: Data Science, Information Technology, and Data Analytics

Vol. 5 No. 1 (2025) 36 – 44

Journal of Dinda : Data Science, Information Technology, and Data Analytics

Vol . 5 No. 1 (2025) 36 – 44
37

The IBS algorithm is very effective for datasets with
varied distributions, especially those of small to medium
size. Furthermore, this study suggests fusing the binary
search algorithm with the jump search algorithm to
produce a hybrid solution that capitalizes on both of their
advantages. Jump search is effective in minimizing data
access by skipping several elements in the data set to find
the target block [10]. While binary search efficiently
narrows down the target block for the target search [11].

This research aims to explore a hybrid algorithm
between jump search and binary search, referred to as
Jump Binary Search (JBS), by conducting a comparative
study between Jump Binary Search and Jump Linear
Search to identify the most efficient method for fast data
retrieval. By conducting this research, it is hoped that a
more efficient hybrid algorithm solution can be
provided.

2. Proposed Jump Binary Search

Two fundamental algorithms for locating a target
element in a set of data distributions with variable orders
are jump search and binary search. Every algorithm has
benefits. The purpose of jump search is to minimize the
quantity of com parisons required to locate the target
element by jumping forward with a fixed step in the
dataset [12]. Using √𝑛 of the array’s total number of
items, this approach first chooses a block step size. The
algorithm then uses that block step to skip over the data
set, examining each block’s components to see if the
target is inside it. A binary search is conducted within
the block to determine the target’s position once the
block where the target may be found has been
determined.

Binary search repeatedly splits the data into two
halves and is intended for a sorted dataset. [13]. Binary
search contrasts the step’s middle element with the
desired value [14]. If the target equals the middle
element, the search is complete. If the target is smaller
than the center element, the search shifts to the left; if it
is larger, the search shifts to the right. With a complexity
of O(𝑙𝑜𝑔!𝑛), binary is perfect for data distribution sets
with different orders.

The Jump Binary Search (JBS) algorithm is
specifically designed to enhance search efficiency by
minimizing the number of data accesses required to find
a target within a sorted data distribution set. This
algorithm combines the advantages of the jump search
and binary search techniques. Jump search is very
effective in narrowing down the search space by
skipping data with a fixed step, it drastically lowers the
quantity of components that must be examined.

Step = | √𝑛 |

n is the number of index elements in the array. After
the block containing the target is found, binary search is
used to determine the exact location of the target by
comparing the target value with the middle element.

Mid = left + | "#$%&'()*&
!

 |

Suppose JBS is searching for the name parameter
"ma sum" in the sorted data. JBS first performs a search
using the jump search approach, then JBS runs a binary
search on the remaining index, which most likely
contains the desired target. Here is the code for JBS.

Algorithm 1 Jump Binary Search

def jump_binary_search(arr, target):

 n = len(arr)

 step = int(math.sqrt(n)) # Jump size

 prev = 0

 # Jump through arrays

 while prev < n and arr[min(step, n)- 1]

 < target:

 prev = step

 step += int(math.sqrt(n))

 if prev >= n:

 return -1

 # Binary Search on found blocks

 left, right = prev, min(step, n)- 1

 while left <= right:

 mid = left + (right- left) // 2

 if arr[mid] == target:

 return mid

 elif arr[mid] < target:

 left = mid + 1

 else:

 right = mid - 1

 return -1

The code above shows the implementation of a
hybrid algorithm, namely Jump Binary Search (JBS), to
efficiently find a target within the elements of a sorted
array. The search process begins with the initialization
of variables: n represents the length of the elements, and
the step size is determined. This step size determines
how far the algorithm jumps over elements during the
initial search, with the aim of quickly identifying the

Gabriella Youzanna Rorong1, Syafrial Fachri Pane2, M Amran Hakim Siregar3
Journal of Dinda: Data Science, Information Technology, and Data Analytics

Vol. 5 No. 1 (2025) 36 – 44

Journal of Dinda : Data Science, Information Technology, and Data Analytics

Vol . 5 No. 1 (2025) 36 – 44
38

block where the target element is located, thereby
reducing the overall search space.

At the beginning of the search, the jump search
algorithm is used as shown in lines 7-11. The algorithm
checks each block’s final constituent before moving on
to the next one. If this element is smaller than the target,
the algorithm searches the next block on the right side.
This process continues until a block is found where the
element equals the target, indicating that the target might
be within that block. If the algorithm runs out of items
and doesn’t find a suitable block, it will return-1
indicating that the array does not contain the target key.

After a block is identified, the algorithm switches to
binary search within that block, as shown in lines 14-24.
Binary search focuses on the identified block, where the
block's borders are shown by left and right, and the mid
index is calculated to divide the block into two parts. If
the goal is at the mid-index, the algorithm returns this

index. If the target is greater than the element at mid, the
search moves to the right part of the block. On the other
hand, the search moves to the left if the target is smaller.
This technique effectively focuses the search to pinpoint
the target's precise position.

Combination Jump Binary Search offers significant
advantages in terms of efficiency. By using jump search
to eliminate most of the elements in the array, the
method lowers the amount of components that require
close inspection [15]. Meanwhile, binary search within
the identified block ensures that the search process runs
quickly and accurately [16][17]. This approach is very
beneficial in large datasets where traditional search
methods would be too slow [18]. The hybrid algorithm
effectively balances the need for speed with the accuracy
of search results.

Table 1 Step Execution of Jump Binary Search

Index Start Index End Middle Index Key (Target) Element at Middle Index Result

0 19 - masum adah key > element

20 39 - masum alam setiawan key > element

40 59 - masum asep key > element

60 79 - masum ciah key > element

80 99 - masum emin key > element

100 119 - masum hamid key > element

120 139 - masum ika rahmawati key > element

140 159 - masum juju key > element

160 179 - masum lili riawinata key > element

180 199 - masum mariam key > element

200 220 210 masum mintarsih key < element

200 209 204 masum masum key == element

Gabriella Youzanna Rorong1, Syafrial Fachri Pane2, M Amran Hakim Siregar3
Journal of Dinda: Data Science, Information Technology, and Data Analytics

Vol. 5 No. 1 (2025) 36 – 44

Journal of Dinda : Data Science, Information Technology, and Data Analytics

Vol . 5 No. 1 (2025) 36 – 44
39

3. Complexity of Jump Binary Search

When the Jump Binary Search (JBS) algorithm is
executed, to locate the target in a sorted dataset, it
combines binary and jump search methods [19].
Initially, jump search is used which has a complexity of
√𝑛 [20]. At this stage, data is jumped with fixed steps,
and the jump size utilizes the complexity of jump search.

The following step, binary search, has a complexity
of O(𝑙𝑜𝑔	𝑛) [21]. Targeting the targeted element by
repeatedly dividing the block in half reduces the search
space by utilizing the complexity of binary search [21].
The total difficulty of JBS is a hybrid complexity of
O(𝑙𝑜𝑔	𝑛), which combines the complexity of binary
search with the jump search approach. Binary Search's
time complexity is greater than Jump Binary Search's
overall time complexity because Binary Search is used
to refine the search space before Binary Search.

Binary and ternary work on sorted data. Unlike
binary, ternary divides the array into three parts to
narrow down the search space [22]. The way ternary
works is the same as binary, only differing in dividing
the array into three parts instead of two, which reduces
time complexity [22]. The complexity of ternary search
is O(𝐿𝑜𝑔+𝑛) [22].

4. Limitations of Jump Binary Search

Although Jump Binary Search offers a more efficient
search, JBS has some limitations. JBS is highly
dependent on a sorted dataset [23]. If the dataset is not
fully ordered or contains minor errors in the sequence,
JBS efficiency may decrease [23]. This may be due to
misidentifying the target block, which can lead to longer
search times. In that case, another search method is more
flexible, such as linear search.

The distribution and size of the dataset are very
important for the efficiency of JBS. The overhead
generated from calculating jump steps and transitioning
to binary search can be greater for smaller datasets,
making traditional binary search more efficient [23]. If
the data has a highly skewed distribution, where the
target element is concentrated in a specific area, a fixed
jump step may not be optimal. In that case, the algorithm
that might be more effective for the data distribution is
Interpolated Search.

JBS does not require much memory because it is
similar to the standard binary search. Because JBS starts
with a jump step, the memory access pattern may be less
optimal. In other words, the computer may need to
retrieve data from a more distant part of the memory,
which can slow down the process in some systems [23].
The speed and efficiency of memory in JBS depend on
the type of data and hardware used. Although JBS

reduces the number of steps, slow memory access can
decrease efficiency.

5. Used of The Jump Binary Search

In Table, the Jump Binary Search (JBS) algorithm is
shown using a sorted dataset with the parameter "name"
[24]. The table outlines the search process by displaying
the attributes of index start, index end, middle index, key
(target), element at middle index, and result at each step
of the search. The start index marks the beginning of the
block being examined, while the end index marks the
end of the block. The middle index is very important
because it helps divide the block into two parts, thereby
efficiently narrowing the search space [25].

The target element referred to as the key is the focus
of the search [26][27]. The element at the middle index
is compared with the key to determine the direction of
the next search step. A key that is larger than the middle
index element is searched on the right side of the index.
But if the key is smaller than the element, the search
shifts to the left. When the key corresponds to the
element at the middle index, the search is successful and
the algorithm delivers the target element's index.

Example search "masum", the JBS algorithm starts
by skipping the dataset with a step of 19 indices.

Step = | √𝑛 |

Step = | √399 | = 19,9 = 19

That stage aims to find the block where the target is
located. After the target block is identified, binary search
continues the search. In this example, the search narrows
down to the block starting at index 200 and ending at
index 220. In this case, the middle index is calculated to
be 210, because the key is smaller than the element at
this index, the search continues in the left part of the
block.

Mid = left + | "#$%&'()*&
!

 |

Mid = 200 + | !!,	'	!,,
!

 |

= 200 + !,
!

= 200 + 10 = 210

When the search is conducted within the index
between 200 and 209, the middle index is calculated to
be 204.

Mid = left + | "#$%&'()*&
!

 |

Gabriella Youzanna Rorong1, Syafrial Fachri Pane2, M Amran Hakim Siregar3
Journal of Dinda: Data Science, Information Technology, and Data Analytics

Vol. 5 No. 1 (2025) 36 – 44

Journal of Dinda : Data Science, Information Technology, and Data Analytics

Vol . 5 No. 1 (2025) 36 – 44
40

Mid = 200 + | !,.	'	!,,
!

 |

= 200 + .
!

= 200 + 4.5 = 204.5 = 204

When the middle index equals the target, the key
equals the element, the search is successfully found by
returning the index of the target element "masum".
Proving that JBS effectively combines jump search and
binary search to minimize search time. The table shows
that the middle index and comparison results change as
the search gets closer to the target.

6. Comparison of JBS And JLS

The Jump Linear Search algorithm, or JLS, is an
innovative approach designed to enhance search
efficiency by combining jump search and linear search.
JLS operates on unordered data, which distinguishes it
from the Jump Binary Search (JBS) algorithm that
requires an ordered dataset [28]. The JLS algorithm
starts by skipping elements with a fixed step, searching
for a block that contains the target element [29]. Once
the right block has been found, JLS searches linearly
inside it to determine the target's precise location. This
method leverages the simplicity of linear search with a
jump technique on an unordered dataset.

One of the striking differences between JLS and JBS
is how each algorithm handles the identified blocks [30].
JLS, after finding the target block, performs a linear
search without dividing the block into smaller parts [31].
Unlike JBS, which uses binary search to divide the block
into two parts, optimizing the search process. The JBS
algorithm is very efficient for sorted data distribution.

The main advantage of JLS is its flexibility and
simplicity. This is beneficial in cases of unordered data
due to time constraints. Making JLS valuable in the
search process. Here is the Python code that implements
JLS and JBS.

Algorithm 2 Jump Binary Search

def jump_binary_search(arr, target):

 n = len(arr)

 step = int(math.sqrt(n)) # Jump size

 prev = 0

 # Jump through arrays

 while prev < n and arr[min(step, n)- 1]

 < target:

 prev = step

 step += int(math.sqrt(n))

 if prev >= n:

 return -1

 # Binary Search on found blocks

 left, right = prev, min(step, n)- 1

 while left <= right:

 mid = left + (right- left) // 2

 if arr[mid] == target:

 return mid

 elif arr[mid] < target:

 left = mid + 1

 else:

 right = mid - 1

 return -1

Algorithm 3 Jump Linear Search

def jump_linear_search_unordered(arr, target):

 n = len(arr)

 step = int(math.sqrt(n)) # Jump size

 prev = 0

 # Jump through arrays

 while prev < n:

Check each element in the current

block

for i in range(prev, min(prev + step ,

n)):

 if arr[i] == target:

return i # Element found

 # Move to the next block

prev += step

Element not found

return -1

7. Results And Comparison

The algorithm in this research was implemented in
Python using Google Colab as the platform to run and
test the code. The experiment focused on the distribution
of sorted data with random search keys [32]. Jump
Binary Search, the data needs to be sorted to maximize
the efficiency of the algorithm [33]. While Jump Linear
Binary Search is used on unsorted data [34]. The dataset
used has the same size and quantity to ensure a fair
comparison [35]. In this case study, the elements consist
of small to medium datasets ranging from 400 to 3200

Gabriella Youzanna Rorong1, Syafrial Fachri Pane2, M Amran Hakim Siregar3
Journal of Dinda: Data Science, Information Technology, and Data Analytics

Vol. 5 No. 1 (2025) 36 – 44

Journal of Dinda : Data Science, Information Technology, and Data Analytics

Vol . 5 No. 1 (2025) 36 – 44
41

elements in the array.

To measure the performance difference between JBS
and JLS, execution time measurements were made [36].
Execution time is used to measure how quickly an
algorithm can complete its search task [9][37].
Execution time is generated based on the size of the data
and the performance of the algorithm [9][38]. In this
case study, repeated measurements were conducted to
minimize errors and obtain more accurate results.

6.1. Performance Test On Non-Uniform Distribution

Figure 1 Execution-time of JBS, JLS and Ternary on a small array
size

Figure 2 Execution-time of JBS, JLS and Ternary on a large array
size

Figures 1 and 2, show a comparison of execution
times for jump binary search, jump linear search, and
ternary search. In Figure 1, JBS is better than JLS, with
an execution time of 0.008-0.012 ms. This indicates that
JBS is more efficient in handling sorted data than JLS,
which takes longer to check elements one by one, with
an execution time range of 0.013-0.030 ms. Meanwhile,
ternary search shows the best performance among the
three algorithms, with lower execution time.

Figure 2, shows the performance of the three
algorithms on a larger dataset. As the dataset size
increases, JLS shows a significant increase in execution
time, but JBS remains stable and efficient with
consistently low execution times, slightly higher than
ternary search but much better than JLS. This
demonstrates JBS's superiority in handling sorted
datasets, where its optimal and stable search strategy
excels.

In figure 3, when tested on unordered data, JBS
remains efficient. In this case, JBS usually requires
sorted data, but it shows stable execution times in the
range of 0.010-0.015 ms, which is almost the same as
ternary search and much better than linear jump search.
This shows that JBS is still a suitable choice for some
unordered datasets, offering a balance between speed
and accuracy.

Figure 3 Execution time of JBS, JLS, and Ternary on large unsorted

array size

6.2. Performance Test On Numerical Distribution

Figure 4 Execution-time of JBS and JLS on numerical distribution

Figure 4, shows the execution time of JBS and JLS
when applied to a numerical distribution. The results
show that JLS is slightly superior to JBS in terms of

Gabriella Youzanna Rorong1, Syafrial Fachri Pane2, M Amran Hakim Siregar3
Journal of Dinda: Data Science, Information Technology, and Data Analytics

Vol. 5 No. 1 (2025) 36 – 44

Journal of Dinda : Data Science, Information Technology, and Data Analytics

Vol . 5 No. 1 (2025) 36 – 44
42

speed. JLS completed its execution in the range of 0.003-
0.004ms, while JBS took slightly longer, with execution
times ranging from 0.004-0.0011ms. The difference
indicates the advantage of using JLS for numerical
distribution, where its search strategy is slightly more
optimal.

6.3. Performance Test On Categorical Distribution

Figure 5 Execution-time of JBS and JLS on categorical distribution

Figure 5, shows the execution time of JBS and JLS
when applied to a categorical distribution. The results
show that JBS is superior to JLS in terms of speed. JBS
completes its execution in the range of 0-10ms, while
JLS takes much longer, with execution times ranging
from 0-80ms. The difference indicates the advantage of
using JBS for the distribution of sorted categorical data.

8. Case Study on Implementation JBS

Figure 6 Execution Time Using The JBS Algorithm

Figure 7 Execution Time Without Using The JBS Algorithm

This case study applies the jump binary search
algorithm to the data management system to improve the
efficiency of searching for social assistance recipients
data. This algorithm begins by calculating the step size
as the square root of the number of elements in the array
that will be jumped over. Then, at each jump, the
algorithm checks the last element of the block that was
skipped. The algorithm continues to the next block if that
element is smaller than the target until it finds a block
that might contain the target. After the block is precisely
defined, the search switches to binary search within that
block to find the exact position of the target.

This implementation shows a significant increase in
efficiency, with an execution time of 3.11s to find social
assistance recipient data with the name "Masum", while
the time required to find data without JBS is 10.16s. The
comparison shows the superiority of JBS in improving
search efficiency and indicates that JBS is the best
choice for searching within the dataset for data
management systems. JBS improves the performance of
the data management system by combining the speed of
jump search with the accuracy of binary search.

9. Conclusion

This research introduces a hybrid algorithm called
Jump Binary Search (JBS), which effectively combines
jump search and binary search techniques. Designed for
sorted data distributions, JBS uses the jump search
method to quickly identify blocks that are likely to
contain the target element. After the block is found, the
algorithm switches to binary search to narrow down the
space by dividing the block into two parts. This approach
significantly improves the speed and accuracy of the
search, making JBS an excellent choice for large sorted
datasets.

The research results show that the speed of JBS is
superior in non-uniform distributions and categorical
distributions. The execution time of JBS, which ranges
from 0.008-0.012ms in non-uniform distribution and 0-
10ms in categorical distribution, demonstrates its
efficiency compared to the Jump Linear Search
algorithm. By minimizing unnecessary data access, JBS
becomes an appropriate algorithmic solution for finding
target elements in non-uniform and categorical data
distributions.

Acknowledgments

The researcher would like to thank the supervisor for his
guidance during the experiments and compiling the
journal, many suggestions helped the researcher in
compiling this research.

References

[1] A. R. Kunduru and R. Kandepu, “Data archival

Gabriella Youzanna Rorong1, Syafrial Fachri Pane2, M Amran Hakim Siregar3
Journal of Dinda: Data Science, Information Technology, and Data Analytics

Vol. 5 No. 1 (2025) 36 – 44

Journal of Dinda : Data Science, Information Technology, and Data Analytics

Vol . 5 No. 1 (2025) 36 – 44
43

methodology in enterprise resource planning
applications (Oracle ERP, Peoplesoft),” J. Adv.
Math. Comput. Sci., vol. 38, no. 9, pp. 115–127,
2023.

[2] H. Benmakhlouf and A. Chouaou, “Electronic
document, information, and archive
management systems in economic institutions:
A descriptive study of the onbase system,” Int.
J. Prof. Bus. Rev. Int. J. Prof. Bus. Rev., vol. 9,
no. 6, p. 11, 2024.

[3] A. G. Putrada, N. Alamsyah, S. F. Pane, M. N.
Fauzan, and D. Perdana, “VANET Severity
Classification in BSM Messages with a Novel
Na{\"\i}ve Bayes Feature Selection,” in 2023
International Conference on Advancement in
Data Science, E-learning and Information
System (ICADEIS), 2023, pp. 1–6.

[4] M. Devan, L. Shanmugam, and M. Tomar, “AI-
powered data migration strategies for cloud
environments: Techniques, frameworks, and
real-world applications,” Aust. J. Mach. Learn.
Res. \& Appl., vol. 1, no. 2, pp. 79–111, 2021.

[5] M. O. Ezeh, A. D. Ogbu, and A. Heavens, “The
Role of Business Process Analysis and Re-
engineering in Enhancing Energy Sector
Efficiency.” 2023.

[6] M. Macedo et al., “Overview on binary
optimization using swarm-inspired algorithms,”
IEEE Access, vol. 9, pp. 149814–149858, 2021.

[7] X. Bai and C. Coester, “Sorting with
predictions,” Adv. Neural Inf. Process. Syst.,
vol. 36, pp. 26563–26584, 2023.

[8] S. Morshtein, R. Ettinger, and S. Tyszberowicz,
“Verifying time complexity of binary search
using Dafny,” arXiv Prepr. arXiv2108.02966,
2021.

[9] A. S. Mohammed, \cSahin Emrah Amrahov, and
F. V Çelebi, “Interpolated binary search: An
efficient hybrid search algorithm on ordered
datasets,” Eng. Sci. Technol. an Int. J., vol. 24,
no. 5, pp. 1072–1079, 2021.

[10] L. Liu et al., “Global dynamic path planning
fusion algorithm combining jump-A* algorithm
and dynamic window approach,” IEEE Access,
vol. 9, pp. 19632–19638, 2021.

[11] X. Hao and B. Chandramouli, “Bf-tree: A
modern read-write-optimized concurrent larger-
than-memory range index,” Proc. VLDB

Endow., vol. 17, no. 11, pp. 3442–3455, 2024.

[12] M. Braik, A. Sheta, and H. Al-Hiary, “A novel
meta-heuristic search algorithm for solving
optimization problems: capuchin search
algorithm,” Neural Comput. Appl., vol. 33, no.
7, pp. 2515–2547, 2021.

[13] S. Kumar, A. Shailu, A. Jain, and N. R.
Moparthi, “Enhanced method of object tracing
using extended Kalman filter via binary search
algorithm,” J. Inf. Technol. Manag., vol. 14, no.
Special Issue: Security and Resource
Management challenges for Internet of Things,
pp. 180–199, 2022.

[14] R. Gomez-Merchan et al., “Binary search based
flexible power point tracking algorithm for
photovoltaic systems,” IEEE Trans. Ind.
Electron., vol. 68, no. 7, pp. 5909–5920, 2020.

[15] Y. Du, “Multi-UAV Search and Rescue with
Enhanced A∗ Algorithm Path Planning in 3D
Environment,” Int. J. Aerosp. Eng., vol. 2023,
no. 1, p. 8614117, 2023.

[16] L. Zhou, X. Bai, X. Liu, J. Zhou, and E. R.
Hancock, “Learning binary code for fast nearest
subspace search,” Pattern Recognit., vol. 98, p.
107040, 2020.

[17] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N.
Sebe, “Binary neural networks: A survey,”
Pattern Recognit., vol. 105, p. 107281, 2020.

[18] S. F. Pane, R. M. Awan, M. A. H. Siregar, and
D. Majesty, “Mapping log data activity using
heuristic miner algorithm in manufacture and
logistics company,” TELKOMNIKA
(Telecommunication Comput. Electron.
Control., vol. 19, no. 3, pp. 781–791, 2021.

[19] A. G. Gad, K. M. Sallam, R. K. Chakrabortty,
M. J. Ryan, and A. A. Abohany, “An improved
binary sparrow search algorithm for feature
selection in data classification,” Neural Comput.
Appl., vol. 34, no. 18, pp. 15705–15752, 2022.

[20] D. Antipov, B. Doerr, and V. Karavaev, “A
rigorous runtime analysis of the (1+($λ$, $λ$))
GA on jump functions,” Algorithmica, vol. 84,
no. 6, pp. 1573–1602, 2022.

[21] D. Harvey and J. Van Der Hoeven, “Integer
multiplication in time O(nlog\backslash,n),”
Ann. Math., vol. 193, no. 2, pp. 563–617, 2021.

[22] Y. Huang, L. Lai, W. Li, and H. Wang, “A

Gabriella Youzanna Rorong1, Syafrial Fachri Pane2, M Amran Hakim Siregar3
Journal of Dinda: Data Science, Information Technology, and Data Analytics

Vol. 5 No. 1 (2025) 36 – 44

Journal of Dinda : Data Science, Information Technology, and Data Analytics

Vol . 5 No. 1 (2025) 36 – 44
44

differential evolution algorithm with ternary
search tree for solving the three-dimensional
packing problem,” Inf. Sci. (Ny)., vol. 606, pp.
440–452, 2022.

[23] T. Kumar, J. Park, M. S. Ali, A. F. M. S. Uddin,
J. H. Ko, and S.-H. Bae, “Binary-classifiers-
enabled filters for semi-supervised learning,”
IEEE Access, vol. 9, pp. 167663–167673, 2021.

[24] S. F. Pane, A. G. Putrada, N. Alamsyah, and M.
N. Fauzan, “A PSO-GBR solution for
association rule optimization on supermarket
sales,” in 2022 seventh international conference
on informatics and computing (ICIC), 2022, pp.
1–6.

[25] J. Kepner et al., “Fast mapping onto census
blocks,” in 2020 IEEE High Performance
Extreme Computing Conference (HPEC), 2020,
pp. 1–8.

[26] H. Alibrahim and S. A. Ludwig,
“Hyperparameter optimization: Comparing
genetic algorithm against grid search and
bayesian optimization,” in 2021 IEEE Congress
on Evolutionary Computation (CEC), 2021, pp.
1551–1559.

[27] J. Zhang, R. Xie, Y. Hou, X. Zhao, L. Lin, and
J.-R. Wen, “Recommendation as instruction
following: A large language model empowered
recommendation approach,” ACM Trans. Inf.
Syst., 2023.

[28] E. Sopov and others, “A Novel Binary DE Based
on the Binary Search Space Topology,” Eur.
Proc. Comput. Technol., 2022.

[29] K. K. Gola, S. Kumar, T. Jain, N. Jee, S.
Kushwaha, and N. Jain, “Odd even: A hybrid
search technique based on bi-linear and jump
search,” in AIP Conference Proceedings, 2023,
vol. 2917, no. 1.

[30] T. Chen, S. Chen, K. Zhang, G. Qiu, Q. Li, and
X. Chen, “A jump point search improved ant
colony hybrid optimization algorithm for path
planning of mobile robot,” Int. J. Adv. Robot.

Syst., vol. 19, no. 5, p. 17298806221127952,
2022.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to algorithms. MIT press,
2022.

[32] S. F. Pane, J. Ramdan, A. G. Putrada, M. N.
Fauzan, R. M. Awangga, and N. Alamsyah, “A
hybrid cnn-lstm model with word-emoji
embedding for improving the twitter sentiment
analysis on indonesia’s ppkm policy,” in 2022
6th International Conference on Information
Technology, Information Systems and Electrical
Engineering (ICITISEE), 2022, pp. 51–56.

[33] J. Erickson, Algorithms. 2023.

[34] G. B. Balogun, “A Comparative Analysis of the
Efficiencies of Binary and Linear Search
Algorithms.,” African J. Comput. \& ICT, vol.
13, no. 1, 2020.

[35] A. G. Putrada, N. Alamsyah, S. F. Pane, M. N.
Fauzan, and D. Perdana, “AUC Maximization
for Flood Attack Detection on MQTT with
Imbalanced Dataset,” in 2023 International
Conference on Information Technology
Research and Innovation (ICITRI), 2023, pp.
133–138.

[36] A. G. Putrada, N. Alamsyah, S. F. Pane, and M.
N. Fauzan, “Xgboost for ids on wsn cyber
attacks with imbalanced data,” in 2022
International Symposium on Electronics and
Smart Devices (ISESD), 2022, pp. 1–7.

[37] A. K. Mishra, S. Mohapatra, and P. K. Sahu,
“Adaptive Tasmanian Devil Optimization
algorithm based efficient task scheduling for big
data application in a cloud computing
environment,” Multimed. Tools Appl., pp. 1–20,
2024.

[38] T. M. Ghazal, “Performances of k-means
clustering algorithm with different distance
metrics,” Intell. Autom. \& Soft Comput., vol.
30, no. 2, pp. 735–742, 2021.

