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Abstract  

This research presents the development of a hybrid algorithm called Jump Binary Search (JBS), which integrates 
jump search and binary search techniques to improve search efficiency in sorted data distributions. JBS is designed 
to accelerate the search process using a jump technique to find the target block, after the block is identified, it is 
followed by a binary search to narrow down the search space. The results of this study show that the performance 
of JBS is superior compared to Jump Linear Search (JLS) when applied to non-uniform and ordered categorical 
data distributions. At 400 elements, JBS requires an execution time between 0.008-0.012 ms and at 3200 elements, 
JBS maintains efficiency with an execution time of 0.010-0.020 ms. The performance of JBS in handling unsorted 
datasets yields interesting results, compared to JLS which experiences a significant increase in execution time. By 
minimizing unnecessary data access, JBS becomes the right solution for finding target elements in sorted data 
distribution. 
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1. Introduction  

Data archives play an important role in 
organizations, serving to store information [1]. With the 
rapid advancement of technology, data archiving has 
shifted from traditional paper formats to digital formats, 
enabling more efficient data management and retrieval 
processes. Digital data archives are organized and 
structured effectively, significantly improving the speed 
and quality of information retrieval, which en hances 
service quality and decision-making processes [2]. 
Despite these advancements, the challenge of efficiently 
searching for data through large volumes of information 
remains, especially with traditional search methods that 
involve looking one by one.  

The inefficiency of manual data collection methods 
becomes apparent as the volume of data increases [3]. 
Search ing for data through archives one record at a time 
is not only time-consuming but also prone to errors and 
data inconsistencies [4]. Such inefficiencies can cause 
delays in accessing important information, which 
ultimately affects the performance and responsiveness of 
an organization [5]. To address this challenge, the 
integration of search algorithms into digital archive 
management systems is becoming increasingly 

important. These algorithms are designed to streamline 
the search process, making it faster. 

Among various search algorithms, binary search 
stands out due to its efficiency and simplicity [6]. Binary 
search performs a search by dividing the data set into 
smaller parts, allowing for a targeted search within 
sorted data [7]. With a temporal complexity of 
O(𝑙𝑜𝑔!𝑛), the binary search method is highly effective 
for big data distribution sets [8]. However, its 
effectiveness can only be used on sorted data, which 
becomes a limitation in certain case studies. With these 
limitations, researchers have explored hybrid 
algorithms, such as Interpolated Binary Search (IBS), 
which combine the advantages of binary search with 
interpolation search. 

Based on previous research, discussing Interpolated 
Bi nary Search (IBS), a method that blends interpolation 
search and binary search. This algorithm is designed to 
work efficiently on various data distributions, especially 
with small to medium-sized data. IBS estimates the 
target element’s location using an interpolation 
technique, then employs binary search to narrow down 
the search space by looking for the desired target [9]. 
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The IBS algorithm is very effective for datasets with 
varied distributions, especially those of small to medium 
size. Furthermore, this study suggests fusing the binary 
search algorithm with the jump search algorithm to 
produce a hybrid solution that capitalizes on both of their 
advantages. Jump search is effective in minimizing data 
access by skipping several elements in the data set to find 
the target block [10]. While binary search efficiently 
narrows down the target block for the target search [11]. 

This research aims to explore a hybrid algorithm 
between jump search and binary search, referred to as 
Jump Binary Search (JBS), by conducting a comparative 
study between Jump Binary Search and Jump Linear 
Search to identify the most efficient method for fast data 
retrieval. By conducting this research, it is hoped that a 
more efficient hybrid algorithm solution can be 
provided. 

2. Proposed Jump Binary Search 

Two fundamental algorithms for locating a target 
element in a set of data distributions with variable orders 
are jump search and binary search. Every algorithm has 
benefits. The purpose of jump search is to minimize the 
quantity of com parisons required to locate the target 
element by jumping forward with a fixed step in the 
dataset [12]. Using √𝑛 of the array’s total number of 
items, this approach first chooses a block step size. The 
algorithm then uses that block step to skip over the data 
set, examining each block’s components to see if the 
target is inside it. A binary search is conducted within 
the block to determine the target’s position once the 
block where the target may be found has been 
determined. 

Binary search repeatedly splits the data into two 
halves and is intended for a sorted dataset. [13]. Binary 
search contrasts the step’s middle element with the 
desired value [14]. If the target equals the middle 
element, the search is complete. If the target is smaller 
than the center element, the search shifts to the left; if it 
is larger, the search shifts to the right. With a complexity 
of O(𝑙𝑜𝑔!𝑛), binary is perfect for data distribution sets 
with different orders. 

The Jump Binary Search (JBS) algorithm is 
specifically designed to enhance search efficiency by 
minimizing the number of data accesses required to find 
a target within a sorted data distribution set. This 
algorithm combines the advantages of the jump search 
and binary search techniques. Jump search is very 
effective in narrowing down the search space by 
skipping data with a fixed step, it drastically lowers the 
quantity of components that must be examined. 

Step = | √𝑛 | 

n is the number of index elements in the array. After 
the block containing the target is found, binary search is 
used to determine the exact location of the target by 
comparing the target value with the middle element. 

Mid = left + | "#$%&'()*&
!

 | 

Suppose JBS is searching for the name parameter 
"ma sum" in the sorted data. JBS first performs a search 
using the jump search approach, then JBS runs a binary 
search on the remaining index, which most likely 
contains the desired target. Here is the code for JBS. 

Algorithm 1 Jump Binary Search 

def jump_binary_search(arr, target): 

 n = len(arr) 

 step = int(math.sqrt(n)) # Jump size 

 prev = 0 

 

 # Jump through arrays 

 while prev < n and arr[min(step, n)- 1] 

 < target: 

 prev = step 

 step += int(math.sqrt(n)) 

 if prev >= n: 

 return -1 

 

 # Binary Search on found blocks 

 left, right = prev, min(step, n)- 1 

 while left <= right: 

 mid = left + (right- left) // 2 

 if arr[mid] == target: 

 return mid 

 elif arr[mid] < target: 

 left = mid + 1 

 else: 

 right = mid - 1 

 

 return -1 

 

The code above shows the implementation of a 
hybrid algorithm, namely Jump Binary Search (JBS), to 
efficiently find a target within the elements of a sorted 
array. The search process begins with the initialization 
of variables: n represents the length of the elements, and 
the step size is determined. This step size determines 
how far the algorithm jumps over elements during the 
initial search, with the aim of quickly identifying the 
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block where the target element is located, thereby 
reducing the overall search space. 

At the beginning of the search, the jump search 
algorithm is used as shown in lines 7-11. The algorithm 
checks each block’s final constituent before moving on 
to the next one. If this element is smaller than the target, 
the algorithm searches the next block on the right side. 
This process continues until a block is found where the 
element equals the target, indicating that the target might 
be within that block. If the algorithm runs out of items 
and doesn’t find a suitable block, it will return-1 
indicating that the array does not contain the target key. 

After a block is identified, the algorithm switches to 
binary search within that block, as shown in lines 14-24. 
Binary search focuses on the identified block, where the 
block's borders are shown by left and right, and the mid 
index is calculated to divide the block into two parts. If 
the goal is at the mid-index, the algorithm returns this 

index. If the target is greater than the element at mid, the 
search moves to the right part of the block. On the other 
hand, the search moves to the left if the target is smaller. 
This technique effectively focuses the search to pinpoint 
the target's precise position. 

Combination Jump Binary Search offers significant 
advantages in terms of efficiency. By using jump search 
to eliminate most of the elements in the array, the 
method lowers the amount of components that require 
close inspection [15]. Meanwhile, binary search within 
the identified block ensures that the search process runs 
quickly and accurately [16][17]. This approach is very 
beneficial in large datasets where traditional search 
methods would be too slow [18]. The hybrid algorithm 
effectively balances the need for speed with the accuracy 
of search results. 

 
Table  1  Step Execution of Jump Binary Search 

Index Start Index End Middle Index Key (Target) Element at Middle Index Result 

0 19 - masum adah key > element 

20 39 - masum alam setiawan key > element 

40 59 - masum asep key > element 

60 79 - masum ciah key > element 

80 99 - masum emin key > element 

100 119 - masum hamid key > element 

120 139 - masum ika rahmawati key > element 

140 159 - masum juju key > element 

160 179 - masum lili riawinata key > element 

180 199 - masum mariam key > element 

200 220 210 masum mintarsih key < element 

200 209 204 masum masum key == element 
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3.  Complexity of Jump Binary Search 

When the Jump Binary Search (JBS) algorithm is 
executed, to locate the target in a sorted dataset, it 
combines binary and jump search methods [19]. 
Initially, jump search is used which has a complexity of 
√𝑛 [20]. At this stage, data is jumped with fixed steps, 
and the jump size utilizes the complexity of jump search. 

The following step, binary search, has a complexity 
of O(𝑙𝑜𝑔	𝑛) [21]. Targeting the targeted element by 
repeatedly dividing the block in half reduces the search 
space by utilizing the complexity of binary search [21]. 
The total difficulty of JBS is a hybrid complexity of 
O(𝑙𝑜𝑔	𝑛), which combines the complexity of binary 
search with the jump search approach. Binary Search's 
time complexity is greater than Jump Binary Search's 
overall time complexity because Binary Search is used 
to refine the search space before Binary Search. 

Binary and ternary work on sorted data. Unlike 
binary, ternary divides the array into three parts to 
narrow down the search space [22]. The way ternary 
works is the same as binary, only differing in dividing 
the array into three parts instead of two, which reduces 
time complexity [22]. The complexity of ternary search 
is O(𝐿𝑜𝑔+𝑛) [22]. 

4.  Limitations of Jump Binary Search 

Although Jump Binary Search offers a more efficient 
search, JBS has some limitations. JBS is highly 
dependent on a sorted dataset [23]. If the dataset is not 
fully ordered or contains minor errors in the sequence, 
JBS efficiency may decrease [23]. This may be due to 
misidentifying the target block, which can lead to longer 
search times. In that case, another search method is more 
flexible, such as linear search. 

The distribution and size of the dataset are very 
important for the efficiency of JBS. The overhead 
generated from calculating jump steps and transitioning 
to binary search can be greater for smaller datasets, 
making traditional binary search more efficient [23]. If 
the data has a highly skewed distribution, where the 
target element is concentrated in a specific area, a fixed 
jump step may not be optimal. In that case, the algorithm 
that might be more effective for the data distribution is 
Interpolated Search. 

JBS does not require much memory because it is 
similar to the standard binary search. Because JBS starts 
with a jump step, the memory access pattern may be less 
optimal. In other words, the computer may need to 
retrieve data from a more distant part of the memory, 
which can slow down the process in some systems [23]. 
The speed and efficiency of memory in JBS depend on 
the type of data and hardware used. Although JBS 

reduces the number of steps, slow memory access can 
decrease efficiency. 

5.  Used of The Jump Binary Search 

In Table, the Jump Binary Search (JBS) algorithm is 
shown using a sorted dataset with the parameter "name" 
[24]. The table outlines the search process by displaying 
the attributes of index start, index end, middle index, key 
(target), element at middle index, and result at each step 
of the search. The start index marks the beginning of the 
block being examined, while the end index marks the 
end of the block. The middle index is very important 
because it helps divide the block into two parts, thereby 
efficiently narrowing the search space [25]. 

The target element referred to as the key is the focus 
of the search [26][27]. The element at the middle index 
is compared with the key to determine the direction of 
the next search step. A key that is larger than the middle 
index element is searched on the right side of the index. 
But if the key is smaller than the element, the search 
shifts to the left. When the key corresponds to the 
element at the middle index, the search is successful and 
the algorithm delivers the target element's index. 

Example search "masum", the JBS algorithm starts 
by skipping the dataset with a step of 19 indices. 

Step = | √𝑛 | 

Step = | √399 | = 19,9 = 19 

That stage aims to find the block where the target is 
located. After the target block is identified, binary search 
continues the search. In this example, the search narrows 
down to the block starting at index 200 and ending at 
index 220. In this case, the middle index is calculated to 
be 210, because the key is smaller than the element at 
this index, the search continues in the left part of the 
block. 

Mid = left + | "#$%&'()*&
!

 | 

Mid = 200 + | !!,	'	!,,
!

 | 

= 200 + !,
!

  

= 200 + 10 = 210 

When the search is conducted within the index 
between 200 and 209, the middle index is calculated to 
be 204. 

Mid = left + | "#$%&'()*&
!

 | 
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Mid = 200 + | !,.	'	!,,
!

 | 

= 200 + .
!
  

= 200 + 4.5 = 204.5 = 204 

When the middle index equals the target, the key 
equals the element, the search is successfully found by 
returning the index of the target element "masum". 
Proving that JBS effectively combines jump search and 
binary search to minimize search time. The table shows 
that the middle index and comparison results change as 
the search gets closer to the target. 

6.  Comparison of JBS And JLS 

The Jump Linear Search algorithm, or JLS, is an 
innovative approach designed to enhance search 
efficiency by combining jump search and linear search. 
JLS operates on unordered data, which distinguishes it 
from the Jump Binary Search (JBS) algorithm that 
requires an ordered dataset [28]. The JLS algorithm 
starts by skipping elements with a fixed step, searching 
for a block that contains the target element [29]. Once 
the right block has been found, JLS searches linearly 
inside it to determine the target's precise location. This 
method leverages the simplicity of linear search with a 
jump technique on an unordered dataset. 

One of the striking differences between JLS and JBS 
is how each algorithm handles the identified blocks [30]. 
JLS, after finding the target block, performs a linear 
search without dividing the block into smaller parts [31]. 
Unlike JBS, which uses binary search to divide the block 
into two parts, optimizing the search process. The JBS 
algorithm is very efficient for sorted data distribution. 

The main advantage of JLS is its flexibility and 
simplicity. This is beneficial in cases of unordered data 
due to time constraints. Making JLS valuable in the 
search process. Here is the Python code that implements 
JLS and JBS. 

Algorithm 2 Jump Binary Search 

def jump_binary_search(arr, target): 

 n = len(arr) 

 step = int(math.sqrt(n)) # Jump size 

 prev = 0 

 

 # Jump through arrays 

 while prev < n and arr[min(step, n)- 1] 

 < target: 

 prev = step 

 step += int(math.sqrt(n)) 

 if prev >= n: 

 return -1 

 

 # Binary Search on found blocks 

 left, right = prev, min(step, n)- 1 

 while left <= right: 

 mid = left + (right- left) // 2 

 if arr[mid] == target: 

 return mid 

 elif arr[mid] < target: 

 left = mid + 1 

 else: 

 right = mid - 1 

 

 return -1 

 

Algorithm 3 Jump Linear Search 

def jump_linear_search_unordered(arr, target): 

 n = len(arr) 

 step = int(math.sqrt(n)) # Jump size 

 prev = 0 

 

 # Jump through arrays 

 while prev < n: 

# Check each element in the current  

block 

for i in range(prev, min(prev + step ,  

n)): 

 if arr[i] == target: 

return i # Element found 

 

 # Move to the next block 

prev += step 

 

# Element not found 

return -1 

 

7.  Results And Comparison 

The algorithm in this research was implemented in 
Python using Google Colab as the platform to run and 
test the code. The experiment focused on the distribution 
of sorted data with random search keys [32]. Jump 
Binary Search, the data needs to be sorted to maximize 
the efficiency of the algorithm [33]. While Jump Linear 
Binary Search is used on unsorted data [34]. The dataset 
used has the same size and quantity to ensure a fair 
comparison [35]. In this case study, the elements consist 
of small to medium datasets ranging from 400 to 3200 
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elements in the array. 

To measure the performance difference between JBS 
and JLS, execution time measurements were made [36]. 
Execution time is used to measure how quickly an 
algorithm can complete its search task [9][37]. 
Execution time is generated based on the size of the data 
and the performance of the algorithm [9][38]. In this 
case study, repeated measurements were conducted to 
minimize errors and obtain more accurate results. 

6.1. Performance Test On Non-Uniform Distribution 

 

Figure 1 Execution-time of JBS, JLS and Ternary on a small array 
size 

 

 

Figure 2 Execution-time of JBS, JLS and Ternary on a large array 
size 

 

Figures 1 and 2, show a comparison of execution 
times for jump binary search, jump linear search, and 
ternary search. In Figure 1, JBS is better than JLS, with 
an execution time of 0.008-0.012 ms. This indicates that 
JBS is more efficient in handling sorted data than JLS, 
which takes longer to check elements one by one, with 
an execution time range of 0.013-0.030 ms. Meanwhile, 
ternary search shows the best performance among the 
three algorithms, with lower execution time. 

Figure 2, shows the performance of the three 
algorithms on a larger dataset. As the dataset size 
increases, JLS shows a significant increase in execution 
time, but JBS remains stable and efficient with 
consistently low execution times, slightly higher than 
ternary search but much better than JLS. This 
demonstrates JBS's superiority in handling sorted 
datasets, where its optimal and stable search strategy 
excels. 

In figure 3, when tested on unordered data, JBS 
remains efficient. In this case, JBS usually requires 
sorted data, but it shows stable execution times in the 
range of 0.010-0.015 ms, which is almost the same as 
ternary search and much better than linear jump search. 
This shows that JBS is still a suitable choice for some 
unordered datasets, offering a balance between speed 
and accuracy. 

 
Figure 3 Execution time of JBS, JLS, and Ternary on large unsorted 

array size 
 

6.2. Performance Test On Numerical Distribution 

 

Figure 4 Execution-time of JBS and JLS on numerical distribution 
 

Figure 4, shows the execution time of JBS and JLS 
when applied to a numerical distribution. The results 
show that JLS is slightly superior to JBS in terms of 
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speed. JLS completed its execution in the range of 0.003-
0.004ms, while JBS took slightly longer, with execution 
times ranging from 0.004-0.0011ms. The difference 
indicates the advantage of using JLS for numerical 
distribution, where its search strategy is slightly more 
optimal. 

6.3. Performance Test On Categorical Distribution 

 

Figure 5 Execution-time of JBS and JLS on categorical distribution 
 

Figure 5, shows the execution time of JBS and JLS 
when applied to a categorical distribution. The results 
show that JBS is superior to JLS in terms of speed. JBS 
completes its execution in the range of 0-10ms, while 
JLS takes much longer, with execution times ranging 
from 0-80ms. The difference indicates the advantage of 
using JBS for the distribution of sorted categorical data. 

8.  Case Study on Implementation JBS 

 
Figure 6 Execution Time Using The JBS Algorithm 

 

 
Figure 7 Execution Time Without Using The JBS Algorithm 

This case study applies the jump binary search 
algorithm to the data management system to improve the 
efficiency of searching for social assistance recipients 
data. This algorithm begins by calculating the step size 
as the square root of the number of elements in the array 
that will be jumped over. Then, at each jump, the 
algorithm checks the last element of the block that was 
skipped. The algorithm continues to the next block if that 
element is smaller than the target until it finds a block 
that might contain the target. After the block is precisely 
defined, the search switches to binary search within that 
block to find the exact position of the target. 

This implementation shows a significant increase in 
efficiency, with an execution time of 3.11s to find social 
assistance recipient data with the name "Masum", while 
the time required to find data without JBS is 10.16s. The 
comparison shows the superiority of JBS in improving 
search efficiency and indicates that JBS is the best 
choice for searching within the dataset for data 
management systems. JBS improves the performance of 
the data management system by combining the speed of 
jump search with the accuracy of binary search.   

9.  Conclusion 

This research introduces a hybrid algorithm called 
Jump Binary Search (JBS), which effectively combines 
jump search and binary search techniques. Designed for 
sorted data distributions, JBS uses the jump search 
method to quickly identify blocks that are likely to 
contain the target element. After the block is found, the 
algorithm switches to binary search to narrow down the 
space by dividing the block into two parts. This approach 
significantly improves the speed and accuracy of the 
search, making JBS an excellent choice for large sorted 
datasets. 

The research results show that the speed of JBS is 
superior in non-uniform distributions and categorical 
distributions. The execution time of JBS, which ranges 
from 0.008-0.012ms in non-uniform distribution and 0-
10ms in categorical distribution, demonstrates its 
efficiency compared to the Jump Linear Search 
algorithm. By minimizing unnecessary data access, JBS 
becomes an appropriate algorithmic solution for finding 
target elements in non-uniform and categorical data 
distributions. 
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