Gastric Disease Diagnostic Expert System Application Using the Fuzzy Mamdani Method

Main Article Content

Shindy Millati Rachma
M. Nishom
Sharfina Febbi Handayai

Abstract

The level of awareness among Indonesian society regarding the importance of maintaining gastric health is still very low, even though gastric diseases can significantly disrupt daily activities. In a medical examination, a doctor detects diseases in a patient's body based on their symptoms or complaints. The patient's action is to meet the doctor in person, and the doctor asks about the symptoms experienced by the patient. In the manual system, there is a drawback where patients have to visit the doctor for consultation or to have their diseases examined, and they also need to prepare the necessary fees for the examination. Such a manual system can be simplified with an information system where patients don't need to visit the doctor to diagnose their diseases. Therefore, the researcher will develop a gastric disease diagnostic expert system application using the fuzzy Mamdani method. The aim is to make it easier for patients/the public to identify the type of disease based on the symptoms experienced, as well as to provide information on solutions, actions, and medication for the disease. The methodology used in developing the gastric disease diagnostic expert system application involves four stages: fuzzification process, implication function, inference process (rules), and defuzzification. The research flow includes data collection through interviews and data sampling, data analysis, calculation using the fuzzy Mamdani method, implementation, and testing using a black box. The result of this research is a gastric disease diagnostic expert system application using the fuzzy Mamdani method with an accuracy of 65%. This application can help individuals to identify the type of disease based on the symptoms experienced without having to immediately consult a doctor, thus avoiding potential issues

Article Details

How to Cite
Rachma, S., Nishom, M., & Handayai, S. (2023). Gastric Disease Diagnostic Expert System Application Using the Fuzzy Mamdani Method. Journal of Informatics Information System Software Engineering and Applications (INISTA), 5(2), 104-114. https://doi.org/10.20895/inista.v5i2.1057
Section
Articles

References

[1] W. A. C. N. Suwindiri, Yulius Tiranda, “Faktor Penyebab Kejadian Gastritis di Indonesia : Literaturre Review Mahasiswa IKEST Muhammadiyah Palembang , Sumatera Selatan , Indonesia IKEST Muhammadiyah Palembang , Sumatera Selatan , Indonesia”, J. Keperawatan Merdeka, vol Vol.1, no November, bl Hal 209-223, 2021.
[2] Mustakim, Y. Rimbawati, en R. Wulandari, “Edukasi Pencegahan Dan Penanganan Gastritis Pada Siswa Bintara Polda Sumatera Selatan”, Pengabdi. Kpd. Masy., vol Vol.3, no 2, bl Hal 1-4, 2021.
[3] Azwar en Anas, “Sistem Pakar Diagnosa Awal Penyakit Lambung Menggunakan Metode Bayes”, no 17, bl Hal 1-9, 2019.
[4] Amrina, D. W. Nugraha, en Rahmatanti, “Menggunakan Metode Case Based Reasoning Berbasis Web”, vol Vol.5, no 1, 2020.
[5] Budianto, I. Fitri, en Winarsih, “Sistem Pakar Deteksi Dini Penyakit Pada Tanaman Jagung Menggunakan Naive Metode Bayes”, Mobile-Based Natl. Univ. Online Libr. Appl. Des., vol Vol.3, no 2, bl Hal 10-19, 2019.
[6] W. Andriyan, S. S. Septiawan, en A. Aulya, “Perancangan Website sebagai Media Informasi dan Peningkatan Citra Pada SMK Dewi Sartika Tangerang”, J. Teknol. Terpadu, vol Vol.6, no 2, bl Hal 79-88, 2020, doi: 10.54914/jtt.v6i2.289.
[7] S. Bacin, “RESOLUSI : Rekayasa Teknik Informatika dan Informasi Sistem Pakar Untuk Mendiagnosa Penyakit Diabetes Menggunakan Metode Inferensi Fuzzy Mamdani”, Media Online), vol Vol.1, no 3, bl Hal 188-194, 2021.
[8] Hidayat Abdurahman et al., “Membangun Website SMA PGRI Gunung Raya Ranau Menggunakan PHP dan MySQL”, JTIM J. Tek. Inform. Mahakarya, vol Vol.2, no 2, bl Hal 41-52, 2019.
[9] A. Anggilina en A. Eviyanti, “Web-Based Expert System for Diagnosing Gastric Disease Using Bayes Theorem Method”, Procedia Eng. Life Sci., vol Vol.1, no 2, 2021, doi: 10.21070/pels.v1i2.944.
[10] Y. Yuliyana en A. S. R. M. Sinaga, “Sistem Pakar Diagnosa Penyakit Gigi Menggunakan Metode Naive Bayes”, Fountain Informatics J., vol Vol.4, no 1, bl Hal 19, 2019, doi: 10.21111/fij.v4i1.3019.
[11] M. Indah en S. V. Dewi, “Rancangan Sistem Pakar Mendiagnosa Penyakit Lambung Menggunakan Metode Forward Chaining”, J. Informatics Comput. Sci., vol Vol.4, no 2, bl Hal 147, 2019, doi: 10.33143/jics.vol4.iss2.541.
[12] F. S. Nurhaidah et al., “Pengetahuan Mahasiswa Universitas Airlangga Mengenai Dispepsia, Gastritis, Dan Gerd Beserta Antasida Sebagai Pengobatannya”, J. Farm. Komunitas, vol Vol.8, no 2, bl Hal 57, 2021, doi: 10.20473/jfk.v8i2.24116.
[13] R. Rizdania, “Sistem Pendukung Keputusan (SPK) Pemilihan Jurusan Perguruan Tinggi Menggunakan Algoritma Fuzzy Mamdani”, J. Tecnoscienza, vol Vol.6, no 1, bl Hal 30-42, 2021, doi: 10.51158/tecnoscienza.v6i1.529.
[14] M. Silmi, E. A. Sarwoko, en F. Chaining, “Sistem Pakar Berbasis Web Dan Mobile Web Untuk Mendiagnosis Penyakit Darah Pada Manusia Dengan Menggunakan Metode Inferensi Forward Chaining”, Masy. Inform., vol Vol.4, bl Hal 31-38, 2019.
[15] Muhammad Romzi en B. Kurniawan, “Pembelajaran Pemrograman Python Dengan Pendekatan Logika Algoritma”, JTIM J. Tek. Inform. Mahakarya, vol Vol.03, no 2, bl Hal 37-44, 2020.