Expert System for Diagnosing Diseases in Coffee Plants Using Forward Chaining and Classic Probability Algorithms Case Study: West Lampung

Main Article Content

Eka Revi Novita
Indra Gunawan
Wawan Gunawan

Abstract

Coffee is a highly demanded product and a key commodity in Indonesia due to its significant market value and contribution to the country's foreign exchange. The majority of coffee plantations are found in highland areas, particularly in West Lampung Regency, which produced approximately 56,054 tons of coffee in 2022. However, coffee production has been declining due to low productivity and quality. One major issue is the limited knowledge of coffee farmers in West Lampung about diseases affecting coffee plants, leading to improper treatment. Another challenge is the lack of experts to guide farmers in managing and treating coffee diseases effectively. To address these problems, an expert system is needed to provide information and solutions for dealing with coffee diseases. This system incorporates expert knowledge into a computerized platform to assist in diagnosing coffee plant diseases. The system is developed using the waterfall method and employs forward chaining and classic probability algorithms to diagnose diseases and calculate the accuracy of results. Users can diagnose based on symptoms and receive treatment recommendations. This web-based expert system aims to assist farmers in early disease diagnosis and provide appropriate solutions for managing coffee diseases

Article Details

How to Cite
Novita, E., Gunawan, I., & Gunawan, W. (2024). Expert System for Diagnosing Diseases in Coffee Plants Using Forward Chaining and Classic Probability Algorithms. Journal of Informatics Information System Software Engineering and Applications (INISTA), 7(1), 33-50. https://doi.org/10.20895/inista.v7i1.1633
Section
Articles

References

[1] Y. Dwi Kartikasari and D. Arifianto, “Sistem Pakar Diagnosa Hama Dan Penyakit Tanaman Kopi Menggunakan Metode Backward Chaining Berbasis Web,” Jutisi, vol. 5, pp. 1–12, 2016.
[2] “Badan Pusat Statistik Provinsi Lampung.” https://lampung.bps.go.id/indicator/54/258/1/produksi-tanaman.html (accessed Mar. 04, 2024).
[3] N. J. Nilsson, “Artificial Intelligence_ A New Synthesis.” 2014.
[4] M. Naca Anbi, G. Fitri Laxmi, F. Riana, C. Hermanto, and B. Pengkajian Teknologi Pertanian Jawa Timur, “Sistem Pakar Diagnosis Penyakit dan Hama Tanaman Pisang dengan Metode Classical Probability,” Krea-TIF J. Tek. Inform., vol. 10, no. 1, pp. 51–58, 2022, doi: 10.32832/krea-tif.v10i1.6993.
[5] P. N. Stuart J. Russel, “Artifical Intelligence A Modern Approach (fourth edition),” Angew. Chemie Int. Ed. 6(11), 951–952., 2021.
[6] M. K. B.herawan hayadi,S.Kom, Sistem pakar. riau: deepublish, 2018.
[7] K. D. P. Novianti, I. M. D. K. Gunawan, and N. K. Sukerti, “Implementasi Forward Chaining Untuk Mendiagnosis Penyakit Tanaman Kopi,” Inser. Inf. Syst. Emerg. Technol. J., vol. 1, no. 2, p. 88, 2021, doi: 10.23887/insert.v1i2.30547.
[8] Z. Azmi and V. Yasin, Pengantar Sistem Pakar Dan Metode. Medan: mitra wacana media, 2017.
[9] usti fatimah puji sari ramadhan, Mengenal metode sistem pakar. medan: uwais inspirasi indonesia, 2018.
[10] muhammad rizwan, Budidaya kopi. sumatera utara: cv. azka pustaka, 2021.
[11] loekas soesanto, Kompendium penyakit-penyakit kopi. yogyakarta: lily publisher, 2020.
[12] A. Abdul Wahid, “Analisis Metode Waterfall Untuk Pengembangan Sistem Informasi,” J. Ilmu-ilmu Inform. dan Manaj. STMIK, no. November, pp. 1–5, 2020.
[13] prihandoko monsya juansen, rg guntur alam, Pengujian dan implementasi sistem informasi. bengkulu: deepublish digital, 2024.
[14] P. . Roger S. Pressman, Software Engineering A PRACTITIONER’S APPROACH, 5th ed. Thomas Casson, 2001.
[15] M. Legita, teknik budidaya tanaman kopi. jogjakarta: trans idea publising.