Implementasi Metode CART untuk Klasifikasi Diagnosis Penyakit Hepatitis Pada Anak
Main Article Content
Abstract
Penyakit hepatitis adalah salah satu ancaman kesehatan utama di dunia. Hepatitis merupakan peradangan pada hati yang biasanya disebabkan oleh virus hepatitis. Berdasarkan hasil riset kesehatan dasar kementerian RI tahun 2014, diperkirakan 10 dari 100 orang Indonesia terinfeksi hepatitis. Menurut Direktur Jenderal Badan Organisasi Kesehatan Dunia (WHO), Tedros Adhanom Ghebreyesus hanya ada 1 dari 10 orang yang pernah melakukan tes hepatitis dan hanya 1 dari 5 orang yang mendapatkan pengobatan hepatitis yang tepat dimana hepatitis A justru lebih sering menyerang anak-anak, terutama yang tinggal di area dengan sanitasi rendah. Penelitian bertujuan untuk membangun sistem aplikasi berbasis komputer dalam menentukan klasifikasi diagnosis penyakit hepatitis dengan metode CART. Data yang digunakan merupakan data dua tahun terakhir dari RSUD Sei Bahar yaitu sebanyak 240 data. Prinsip dari metode CART adalah memilah seluruh amatan menjadi dua gugus amatan dan memilah kembali gugus amatan tersebut menjadi dua gugus amatan berikutnya. Hasil klasifikasi menggunakan metode CART sebagai pengetahuan menentukan penyakit hepatitis. Dengan menggunakan 35 data uji, dan analisis rekomendasi dari pakar, didapatkan bahwa metode CART dapat digunakan sebagai metode pengklasifikasian pada penyakit hepatitis dengan tingkat akurasinya sebesar 94%.
Article Details
Copyright Notice
Authors who publish with Journal of Informatics, Information System, Software Engineering and Applications (INISTA) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
[2] B. Perez, C. Castellanos, and D. Correal, “Applying Data Mining Techniques to Predict Student Dropout: A Case Study,” in 2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence, ColCACI 2018 - Proceedings, 2018.
[3] D. V. Paul, C. Nayagam, and J. D. Pawar, “Modeling Academic Performance using Subspace Clustering Algorithm,” in Proceedings - IEEE 8th International Conference on Technology for Education, T4E 2016, 2017.
[4] Fahad Ahmad, Kashaf Junaid and Ata ul Mustafa, “Relationship of Liver Enzymes with Viral Load of Hepatitis C in HCV Infected Patients by Data Analytics” International Journal of Advanced Computer Science and Applications(IJACSA), 9(11), 2018.
[5] K. Kohli and S. Birla, “Data Mining on Student Database to Improve Future Performance,” Int. J. Comput. Appl., 2016.
[6] M. Anoopkumar and A. M. J. Md Zubair Rahman, “A Review on Data Mining techniques and factors used in Educational Data Mining to predict student amelioration,” in Proceedings of 2016 International Conference on Data Mining and Advanced Computing, SAPIENCE 2016, 2016.
[7] Manikandan .R, Ramesh R.“A Schematic Data Mining Approach for Web Page Recommendation Systems", Volume. 3 Issue. 10, October- 2018, International Journal of Innovative Science and Research Technology (IJISRT) ,www.ijisrt.com , ISSN - 2456-2165, PP:-489-492.
[8] Mukhtar, Ismail.“The use of Certainty Factor (CF) in Technostress Diagnation Expert System'', Volume. 4 Issue. 5, - 2019, International Journal of Innovative Science and Research Technology (IJISRT), www.ijisrt.com. ISSN - 2456-2165, PP:-727-732.
[9] Novarina, A. T., & Santoso, E. (2018). Sistem Pakar Diagnosis Penyakit Hepatitis Menggunakan Metode Dempster Shafer. Jurnal Pengenmbanagan Teknologi Informasi Dan Ilmu Komputer, 2(6), 2252–2258.
[10] Ramdhani, A., Isnanto, R. R., & Windasari, I. P. (2015). Pengembangan Sistem Pakar Untuk Diagnosis Penyakit Hepatitis Berbasis Web Menggunakan Metode Certainty Factor. Jurnal Teknologi Dan Sistem Komputer, 3(1), 58–64. https://doi.org/10.14710/JTSISKOM.3.1.2015.58-64.
[11] R. Asif, A. Merceron, S. A. Ali, and N. G. Haider, “Analyzing undergraduate students’ performance using educational data mining,” Comput. Educ., 2017.
[12] Sri Winiarti, Herman Yuliansyah and Aprial Andi Purnama, “Identification of Toddlers’ Nutritional Status using Data Mining Approach” International Journal of Advanced Computer Science and Applications(IJACSA), 9(1), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090122.
[13] Sahar F. Sabbeh, “Machine-Learning Techniques for Customer Retention: A Comparative Study” International Journal of Advanced Computer Science and Applications(IJACSA), 9(2), 2018.
[14] Saranya.E, Maheswaran.T.“IOT Based Disease Prediction and Diagnosis System for Healthcare Using Data Mining Techniques'', Volume. 3 Issue. 10, October- 2018, International Journal of Innovative Science and Research Technology (IJISRT) ,www.ijisrt.com , ISSN - 2456-2165, PP:-718-721.
[15] Susanto, S., & Suryani, D. (2010). Pengantar Data Mining. (Nikodemus WK, Ed.) (1st ed.). YOGYAKARTA: CV ANDI OFFSET.
[16] Suwardika, G. (2017). Pengelompokan Dan Klasifikasi Pada Data Hepatitis Dengan Menggunakan Support Vector Machine ( SVM ), Classification And Regression Tree ( Cart ) Dan Regresi Logistik Biner, 1, 183–191.