Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM)
Main Article Content
Abstract
Penampilan menarik merupakan hal yang diinginkan oleh sebagian perempuan, terutama perawatan kulit. Saat ini tingkat kepedulian merawat kulit sudah tinggi pada perempuan. Sebelum melaksanakan perawatan kulit hal yang utama yaitu mengetahui jenis kulit, untuk membantu perempuan agar lebih mudah mengetahui jenis produk skincare yang cocok pada kulit sehingga penelitian ini membahas mengenai analisis sentimen review skincare pada website kecantikan female daily. Metode yang digunakan pada penelitian ini adalah Support Vector Machine (SVM). SVM merupakan machine learning yang sudah banyak digunakan pada penelitian-penelitian sebelumnya dan memberikan hasil yang maksimal. Penelitian ini mendapatkan hasil akurasi sebanyak 87% dengan recall sebesar 90%, precision sebesar 84,90%, dan f1 score sebesar 87,37%.
Article Details
Copyright Notice
Authors who publish with Journal of Informatics, Information System, Software Engineering and Applications (INISTA) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
[2] A. Amolik, N. Jivane, M. Bhandari, and D. M. Venkatesan, “Twitter Sentiment Analysis of Movie Reviews using Machine Learning Techniques.,” International Journal of Engineering and Technology, vol. 7, no. 6, p. 7, 2016.
[3] M. J. Power and T. Dalgleish, Cognition and Emotion: From Order to Disorder. London: Psychology Press.
[4] I. A. Ropikoh, R. Abdulhakim, U. Enri, and N. Sulistiyowati, “Penerapan Algoritma Support Vector Machine (SVM) untuk Klasifikasi Berita Hoax Covid-19,” vol. 5, no. 1, p. 9.
[5] F. V. Sari and A. Wibowo, “ANALISIS SENTIMEN PELANGGAN TOKO ONLINE JD.ID MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER BERBASIS KONVERSI IKON EMOSI,” vol. 10, no. 2, p. 6, 2019.
[6] A. D. Rahmawan, “Analisis Emosi Pada Twitter Review Film Dalam Bahasa Indonesia,” Gadjah Mada University, Yogyakarta, 2018.
[7] B. Laurensz and Eko Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19,” JNTETI, vol. 10, no. 2, pp. 118–123, May 2021, doi: 10.22146/jnteti.v10i2.1421.
[8] Y. Mejova, “Sentiment Analysis: An Overview,” p. 34.
[9] Advanced Approaches in Analyzing Unstructured Data. Inggris: Cambridge University Press, 2006.
[10] O. Somantri, S. Wiyono, and D. Dairoh, “Metode K-Means untuk Optimasi Klasifikasi Tema Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (SVM),” SJI, vol. 3, no. 1, pp. 34–45, Jun. 2016.
[11] B. Pamungkas and M. E. Purbaya, “Analisis Sentimen Twitter Menggunakan Metode Support Vector Machine (SVM) pada Kasus Benih Lobster 2020,” p. 11, 2021.