Implementasi Fitur Haar-like dalam Mendeteksi dan Menghitung Jumlah Orang pada Noised Digital Image
Main Article Content
Abstract
Mendeteksi objek pada citra digital bagi manusia pada umumnya merupakan hal yang tidak sulit, namun tidak bagi komputer. Komputer membutuhkan teknologi khusus untuk mengolah suatu citra hingga dapat mendeteksi objek pada citra digital. Visi komputer memberikan solusi pada komputer untuk dapat mendeteksi objek pada citra digital. Salah satu fitur yang dapat diimplementasikan adalah Fitur Haar-like. Dengan fitur Haar-like, komputer akan mengekstraksi citra digital yang nantinya akan dideteksi suatu objek pada citra tersebut dengan algoritma Viola-Jones, yaitu algoritma cascade classifier yang berfungsi untuk mendeteksi suatu objek pada citra berdasarkan data citra terlatih (trained data). Pada penelitian ini, Fitur Haar dapat mendeteksi objek pada citra digital dengan tiga kondisi yang berbeda, yaitu saat kondisi normal, kondisi citra dengan derau, dan kondisi citra dengan pencahayaan rendah. Visi komputer dengan Fitur Haar-like dapat mendeteksi objek pada ketiga kondisi citra tersebut dengan prosentase kesalahan yang cukup rendah.
Article Details
Copyright Notice
Authors who publish with Journal of Informatics, Information System, Software Engineering and Applications (INISTA) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
[2] Dawson-Howe Kenneth, “A Practical Introduction to Computer Vision with OpenCV”, Wiley, 2014.
[3] Jones Michael, dan Viola Paul, “Rapid Object Detection using a Boosted Cascade of Simple Features”, Proceesings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 2001, pp. I-I.
[4] Utaminingrum Fitri, Primaswara Renaldi, dan Sari Yuita A., “Image Processing of Rapidly Eye Detection based on Robust Haar Sliding Window”, International Journal of Electrical and Computer Engineering (IJECE), Vol. 7, No. 2, April 2017, pp. 823-830.
[5] Iqbal Mohammad, Yuwono Rudi T., Fadhillah Hadyan M., dan Widiyanto Sigit, “Realtime Stereo Vision for Vehicle Detection, Classification and Counting Using Raspberry Pi”, Journal of Engineering and Applied Sciences, 12 (8), 2207-2213, 2017.
[6] Sathua Sujaya Kumar, Arabinda Dash, dan Aishwaryarani Behera, “Removal of Salt and Pepper noise from Gray-Scale and Color Images: An Adaptive Approach”, IJCST, Vol. 5, Issue 1, Jan-Feb 2017.
[7] Zhang Peixuan, dan Li Fang, “A New Adaptive Weighted Mean Filter for Removing Salt-and-Pepper Noise”, IEEE Signal Processing Letters, Vol. 21, No. 10, October 2014.