Analisis Segmentasi Sel Darah Merah berbasis Mask-RCNN

Main Article Content

Dyah Aruming Tyas
Tri Ratnaningsih

Abstract

Pengembangan Computer-aided diagnosis (CAD) pada bidang patologi klinik memiliki tantangan tersendiri. CAD pada bidang patologi klinik diharapkan dapat membantu proses pengamatan laboratorium. Salah satu tantangan pengembangan CAD tersebut adalah pada proses segmentasi sel darah merah. Segmentasi sel darah merah yang menempel biasanya menimbulkan kesalahan segmentasi berupa bentuk sel tidak utuh atau sel sama sekali tidak tersegmentasi. Kesalahan segmentasi akan berakibat pada kesalahan pengenalan jenis sel darah sehingga diperlukan metode yang tepat untuk proses segmentasi. Oleh sebab itu, penelitian ini berfokus untuk menganalisis hasil segmentasi sel darah merah yang diperoleh menggunakan arsitektur model Mask-RCNN. Variasi parameter detection min confidence dilakukan untuk melihat dampaknya pada hasil segmentasi. Berdasarkan hasil penelitian diperoleh bahwa akurasi hasil segmentasi terbaik adalah 91,24% yang berasal dari model Mask-RCNN dengan nilai parameter detection min confidence = 0,7. Pada model tersebut, baik sel darah merah tunggal ataupun sel darah merah yang saling menempel dapat disegmentasi dengan baik.

Article Details

How to Cite
Tyas, D., & Ratnaningsih, T. (2022). Analisis Segmentasi Sel Darah Merah berbasis Mask-RCNN. Journal of Informatics Information System Software Engineering and Applications (INISTA), 5(1), 1-7. https://doi.org/10.20895/inista.v5i1.766
Section
Articles

References

[1] H. Elsalamony, “Anaemia Cells Detection based on Shape Signature Using Neural Networks,” Measurement, vol. 104, pp. 50–59, 2017.
[2] S. Hartati, A. Harjoko, R. Rosnelly, I. Chandradewi, and Faizah, “Performance of SVM and ANFIS for Classification of Malaria Parasite and Its Life-Cycle-Stages in Blood Smear,” in Communications in Computer and Information Science, vol 937, 2018, pp. 110–121, doi: https://doi.org/10.1007/978-981-13-3441-2_9.
[3] A. Setiawan, A. Harjoko, T. Ratnaningsih, E. Suryani, Wiharto, and S. Palgunadi, “Classification of cell types in Acute Myeloid Leukemia (AML) of M4, M5 and M7 subtypes with support vector machine classifier,” in 2018 International Conference on Information and Communications Technology, ICOIACT 2018, 2018, pp. 45–49, doi: 10.1109/ICOIACT.2018.8350822.
[4] S. Chandrasiri and P. Samarasinghe, “Morphology Based Automatic Disease Analysis Through Evaluation of Red Blood Cells,” 5th International Conference on Intelligent Systems, Modelling and Simulation. IEEE, Langkawi, pp. 318–323, 2014, doi: 10.1109/ISMS.2014.60.
[5] O. Sarrafzadeh, A. M. Dehnavi, H. Rabbani, N. Ghane, and A. Talebi, “Circlet based Framework for Red Blood Cells Segmentation and Counting,” in 2015 IEEE Workshop on Signal Processing Systems (SiPS), 2015, pp. 1–6, doi: 10.1109/SiPS.2015.7344979.
[6] H. Chauris, I. Karoui, P. Garreau, H. Wackernagel, P. Craneguy, and L. Bertino, “The Circlet Transform: A Robust Tool for Detecting Features with Circular Shapes,” Comput. Geosci., vol. 37, no. 3, pp. 331–342, 2011, doi: http://dx.doi.org/10.1016/j.cageo.2010.05.009.
[7] N. Z. N. Rashid, M. Y. Mashor, and R. Hassan, “Unsupervised Color Image Segmentation of Red Blood Cell for Thalassemia Disease.,” 2nd International Conference on Biomedical Engineering (ICoBE). IEEE, Penang, pp. 1–6, 2015, doi: 10.1109/ICoBE.2015.7235892.
[8] J. A. Alkrimi, L. E. George, A. Suliman, A. R. Ahmad, and K. Al-Jashamy, “Isolation and Classification of Red Blood Cells in Anemic Microscopic Images,” World Acad. Sci. Eng. Technol. Int. J. Medical, Heal. Bioeng. Pharm. Eng., vol. 8, no. 10, pp. 727–730, 2014, [Online]. Available: http://waset.org/Publication/isolation-and-classification-of-red-blood-cells-in-anemic-microscopic-images/9999608.
[9] E. Suryani, Wiharto, and K. N. Wahyudian, “Identifikasi Anemia Thalasemia Betha Mayor Berdasarkan Morfologi Sel Darah Merah,” Sci. J. Informatics, vol. 2, no. 1, pp. 15–28, 2015.
[10] I. Ahmad, S. N. H. S. Abdullah, and R. Z. A. R. Sabudin, “Geometrical vs spatial features analysis of overlap red blood cell algorithm,” in 2016 International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES), Nov. 2016, pp. 246–251, doi: 10.1109/ICAEES.2016.7888047.
[11] V. Sharma, A. Rathore, and G. Vyas, “Detection of sickle cell anaemia and thalassaemia causing abnormalities in thin smear of human blood sample using image processing,” in 2016 International Conference on Inventive Computation Technologies (ICICT), Aug. 2016, vol. 3, pp. 1–5, doi: 10.1109/INVENTIVE.2016.7830136.
[12] M. Tyagi, L. M. Saini, and N. Dahyia, “Detection of Poikilocyte cells in Iron Deficiency Anaemia using Artificial Neural Network,” in 2016 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), Apr. 2016, pp. 108–112, doi: 10.1109/ICCPEIC.2016.7557233.
[13] S. M. Abas, A.M. Abdulazeez, and D. Q. Zeebaree, “A YOLO and Convolutional neural network for detection and classification of leukocytes in leukemia,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 25, no. 1, 2022, pp. 200–213, doi: 10.11591/ijeecs.v25.il.pp200-213.
[14] D.I. Saphietra. “Klasifikasi Sel Darah Merah Untuk Skrining Thalasemia Minor Menggunakan Transfer Learning Convolutional Neural Network”. Skripsi, DIKE, UGM, Yogyakarta, 2021.