Prediksi Harga Ethereum Menggunakan Metode Vector Autoregressive
Main Article Content
Abstract
Ethereum sebagai salah satu cryptocurrency yang transaksinya dapat dilakukan tanpa membutuhkan kartu kredit atau melalui bank sentral, akan tetapi cryptocurrency mengalami fluktuasi terhadap harga yang berubah secara periode tertentu. Risiko fluktuasi harga ini dapat diantisipasi dengan melakukan prediksi terhadap nilai tukarnya, penelitian ini menggunakan kurs Dollar Amerika Serikat sebagai acuan nilai tukar setiap satu Ethereum. Prediksi yang dilakukan menggunakan pendekatan Vector Autoregressive untuk melakukan analisis data dalam bentuk time series. Berdasarkan hasil penelitian yang telah dilakukan diketahui bahwa hasil perhitungan nilai error menggunakan Root Mean Square Error yaitu nilai error pada harga pembukaan 890,29, nilai error pada harga tertinggi 930,50, nilai error pada harga terendah 1.164,12 dan nilai error pada harga penutupan 978,37.
Article Details
Copyright Notice
Authors who publish with Journal of Informatics, Information System, Software Engineering and Applications (INISTA) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
[2] CNBC Indonesia, “Bos Ethereum Bicara Soal Kejatuhan Harga Kripto, Tak Kaget!,” 2021. https://www.cnbcindonesia.com/investment/20210521152104-21-247407/bos-ethereum-bicara-soal-kejatuhan-harga-kripto-tak-kaget.
[3] A. R. Ashariansyah, N. Iriawan, and A. Mukarromah, “Pemodelan Harga Cryptocurrency Menggunakan Markov Switching Autoregressive,” Inferensi, vol. 3, no. 2, p. 81, 2020, doi: 10.12962/j27213862.v3i2.7726.
[4] A. Nurdiansyah, M. T. Furqon, and B. Rahayudi, “Prediksi Harga Bitcoin Menggunakan Metode Extreme Learning Machine (ELM) dengan Optimasi Artificial Bee Colony (ABC),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 6, pp. 5531–5539, 2019, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5507.
[5] H. Fatah and A. Subekti, “Prediksi Harga Cryptocurrency Dengan Metode K-Nearest Neighbours,” J. PILAR Nusa Mandiri, vol. 14, no. 2, pp. 137–144, 2018, doi: https://doi.org/10.33480/pilar.v14i2.30.
[6] A. S. Aulia, “Analisis Volatility Spillover Harga Bitcoin Dengan Harga Altcoin Tahun 2013-2018,” JASa ( J. Akuntansi, Audit dan Sist. Inf. Akuntansi), vol. 3, no. 2, pp. 183–194, 2019, [Online]. Available: http://journal.unla.ac.id/index.php/jasa/article/view/942.
[7] R. Faizal, B. D. Setiawan, and I. Cholissodin, “Prediksi Nilai Cryptocurrency Bitcoin menggunakan Algoritme Extreme Learning Machine (ELM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 9, pp. 4226–4233, 2019.
[8] N. Agustin, R. Ibnas, and Nursalam, “Implementasi Metode Vector Autoregressive (Var) dalam Meramalkan Jumlah Penduduk (Studi Kasus : Kabupaten Gowa),” J. Mat. dan Stat. serta Apl., vol. 7, no. 2, pp. 55–60, 2019, doi: https://doi.org/10.24252/msa.v7i2.11943.