Integration of RFM Method and K-Means Clustering for Customer Segmentation Effectiveness

  • Nafissatus Zahro Universitas Islam Nahdlatul Ulama Jepara
  • Nadia Annisa Maori Universitas Islam Nahdlatul Ulama Jepara
  • Gentur Wahyu Nyipto Wibowo Universitas Islam Nahdlatul Ulama Jepara
Keywords: Customer Segmentation, RFM, K-Means Clustering, Data Analysis, Marketing Strategy, Silhouette Score

Abstract

Penelitian ini bertujuan untuk mengintegrasikan metode RFM dan K-Means Clustering untuk segmentasi pelanggan. Rumusan masalah yang diajukan adalah bagaimana mengintegrasikan kedua metode ini agar segmentasi pelanggan lebih efektif. Data transaksi pelanggan ADAPTA.Id tahun 2022 yang meliputi 2.252 transaksi pelanggan dianalisis untuk menghasilkan nilai RFM, dinormalisasi, dan diklaster menggunakan K-Means. Dua klaster optimal diidentifikasi dengan skor silhouette sebesar 0,8511. Dari total 2.252 transaksi pelanggan, terdapat dua klaster utama: klaster pertama berisi 10 pelanggan dengan frekuensi pembelian tinggi dan nilai transaksi signifikan, sedangkan klaster kedua terdiri dari 918 pelanggan dengan frekuensi dan nilai transaksi lebih rendah. Mayoritas pelanggan berada di klaster kedua. Segmentasi ini memungkinkan perusahaan untuk merancang strategi pemasaran yang lebih efektif dengan memfokuskan sumber daya untuk mempertahankan pelanggan bernilai tinggi dan meningkatkan aktivitas pembelian di klaster bernilai rendah. Pendekatan ini menawarkan wawasan mendalam untuk strategi bisnis yang lebih efisien, serta meningkatkan kepuasan dan loyalitas pelanggan. Skor silhouette yang tinggi menegaskan validitas klaster.

Published
2025-01-28