Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus: Ulasan Pelanggan Pada Situs TRIPADVISOR)
Main Article Content
Abstract
Aplikasi e-tourism di Indonesia sudah banyak diterapkan terutama untuk layanan akomodasi wisata seperti hotel atau penginapan. Salah satu aplikasi e-tourism yang terkenal adalah tripadvisor.co.id. Aplikasi tersebut memudahkan masyarakat memesan hotel secara online karena lebih cepat, praktis dan mudah. Salah satu faktor penting dalam memilih hotel terbaik dengan harga terjangkau ialah pendapat para pelanggan hotel dari ulasan pada kolom komentar dari para pelanggan hotel sebelumnya. Banyaknya data ulasan pelanggan membutuhkan waktu yang lama untuk mengetahui polaritas ulasan positif dan mana ulasan negatif secara manual. Oleh karena itu diperlukan model analisis sentimen yang akurat yang dapat mengklasifikasikan ulasan pelanggan menjadi ulasan positif dan negatif. Pada penelitian ini diusulkan model analisis sentimen pelanggan hotel menggunakan metode Random Forest Classifier dan Term Frequency–Inverse Document Frequency (TF–IDF). Dataset yang digunakan untuk membangun model sentimen analisis adalah data komentar-komentar pelanggan hotel di Purwokerto yang diunduh dari situs tripadvisor.co.id. Pada preprocessing melibatkan proses konversi slangword menjadi kata baku sesuai KBBI, stemming, dan menambahkan kata-kata stopword baru selain stopword dalam library sastrawi. Hasil penelitian menunjukkan akurasi model mencapai akurasi 87,23%. Akan tetapi jika tanpa proses stemming, akurasi model hanya 76,07%.
Article Details
Copyright Notice
Authors who publish with Journal of Informatics, Information System, Software Engineering and Applications (INISTA) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
[2] S. Khomsah, A. F. Hidayatullah, and A. S. Aribowo, “Comparison of the Effects of Feature Selection and Tree-Based Ensemble Machine Learning for Sentiment Analysis on Indonesian YouTube Comments,” 2021, pp. 161–172, doi: 10.1007/978-981-33-6926-9_15.
[3] S. Khomsah and A. S. Aribowo, “Model Text-Preprocessing Komentar Youtube Dalam Bahasa Indonesia,” Rekayasa Sistem dan Teknologi Informasi, RESTI, vol. 4, no. 4, pp. 648–654, 2020, doi: 10.29207/resti.v4i4.2035.
[4] S. Khedkar and S. Shinde, “Linguistic Feature-Based Praise or Complaint Classification from Customer Komentars,” in International Conference on Intelligent Computing, Information and Control Systems (ICICCS 2019), 2019, pp. 470–481, doi: 10.1007/978-3-030-30465-2_52.
[5] I. Z. Evasaria M. Sipayung, Herastia Maharani, “Perancangan Sistem Analisis Sentimen Komentar Pelanggan Menggunakan Metode Naive Bayes Classifier,” Jurnal Sistem Informasi (JSI), vol. 8, no. 1, pp. 104–126, 2016.
[6] Elin Hanjani Pramitha; Siti Khomsah; Amalia Beladinna Arifa;, “Analisis Sentimen Pelanggan Hotel Di Purwokerto Menggunakan Naive Bayes Classifier dan Particle Swarm Optimization ( Studi Kasus: Ulasan Pelanggan pada Situs Agoda dan Tripadvisor),” Banyumas, 2020.
[7] L. Mostafa, “Machine Learning-Based Sentiment Analysis for Analyzing the Travelers Komentars on Egyptian Hotels,” in Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020), 2020, pp. 405–413, doi: 10.1007/978-3-030-44289-7_38.
[8] A. S. Aribowo, H. Basiron, N. S. Herman, and S. Khomsah, “Fanaticism Category Generation Using Tree-Based Machine Learning Method,” in International Conference on Science & Technology (ICoST 2019), 2020, vol. 1501, no. 1, doi: 10.1088/1742-6596/1501/1/012021.
[9] Y. Hegde and S. K. Padma, “Sentiment Analysis Using Random Forest Ensemble for Mobile Product Komentars in Kannada,” 2017, doi: 10.1109/IACC.2017.151.
[10] S. Khomsah, P. Studi, S. Data, J. Tengah, and I. Artikel, “Sentiment Analysis On YouTube Comments Using Word2Vec and Random Forest,” vol. 18, no. 1, pp. 61–72, 2021, doi: 10.31515/telematika.v18i1.4493.