Implementasi HoneyPy Dengan Malicious Traffic Detection System (Maltrail) Menggunakan Analisis Deskriptif Guna Untuk Mendeteksi Serangan DDOS Pada Server
Main Article Content
Abstract
Pada era sekarang ini, masih banyak serangan terhadap server yang membuat server akan mengalami kerusakan sistem operasi. Contoh yang sering ditemukan adalah serangan DoS. Dalam pencegahan, diperlukan keamanan atau referensi untuk mendukung keamanan server. Keamanan terhadap jaringan dan server merupakan hal yang sangat penting, karena sudah banyak serangan dilakukan oleh pihak yang tidak bertanggungjawab. Sehingga diperlukan suatu penanganan yang dapat menganalisis serangan terhadap beberapa ancaman. HoneyPy dengan Maltrail merupakan aplikasi yang bersifat open source yang bisa digunakan untuk metode pembuktian pada penelitian. Terdapat CentOs yang digunakan sebagai server tambahan dan Linux Mint sebagai server utama. Serangan-serangan yang dilakukan pada penelitian ini dilakukan oleh peneliti sendiri pada server menggunakan serangan DoS. Data yang dikumpulkan dari maltrail sudah dianalisis menggunakan analisis deskriptif, hasil penelitian ini yaitu HoneyPy dengan Maltrail mampu menjadi tolak ukur untuk digunakan sebagai peningkatan keamanan pada serangan di bagian server. Berdasarkan pengujian didapatkan bahwa hasil berupa lima laporan didapatkan tiga threats, enam events, severity terdeteksi low dan medium, satu sumber ancaman pada sources, dan empat trails.
Article Details
Copyright Notice
Authors who publish with Journal of Informatics, Information System, Software Engineering and Applications (INISTA) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
[2] M. Nawrocki, M. Wählisch, T. C. Schmidt, C. Keil, and J. Schönfelder, “A Survey on Honeypot Software and Data Analysis,” 2016, [Online]. Available: http://arxiv.org/abs/1608.06249.
[3] B. R. Prasad, A. Abraham, V. Suhas, and K. Kumar, “DOS attack pattern generator for training the neural network based classifier to dynamically blacklist IP in honeypot based NIDS/NIPS,” Thinkquest~2010, pp. 224–226, 2011, doi: 10.1007/978-81-8489-989-4_41.
[4] B. P. Zen, R. A. G. Gultom, and A. H. S. Reksoprodjo, “Analisis Security Assessment Menggunakan Metode Penetration Testing dalam Menjaga Kapabilitas Keamanan Teknologi Informasi Pertahanan Negara,” J. Teknol. Penginderaan, vol. 2, no. 1, pp. 105–122, 2020.
[5] Z. Amin, “Analisis Vulnerabilitas Host Pada Keamanan Jaringan Komputer Di Pt . Sumeks Tivi Palembang ( Paltv ) Menggunakan Router Berbasis Unix,” Teknol. dan Inform., vol. 2, no. 3, pp. 189–199, 2012.
[6] J. B. Bolanio, R. K. Paredes, A. L. Yoldan Jr., and R. E. Acapulco II, “Network Security Policy for Higher Education Institutions based on ISO Standards,” Mediterr. J. Basic Appl. Sci., vol. 05, no. 01, pp. 01–17, 2021, doi: 10.46382/mjbas.2021.5101.
[7] Hudzaifah, A. Sularsa, and D. R. Suchendra, “Membangun Sistem Monitoring Malicious Traffic Di Jaringan Dengan Maltrail,” e-Proceeding Appl. Sci., vol. 4, no. 3, pp. 2013–2018, 2018.
[8] L. P. Aidin, S. M. Nasution, and F. Azmi, “Implementasi High Interaction Honeypot Pada Implementation of High Interaction Honeypot,” e-Proceeding Eng., vol. 3, no. 2, pp. 2172–2178, 2016.
[9] N. Naik, P. Jenkins, N. Savage, and L. Yang, “A computational intelligence enabled honeypot for chasing ghosts in the wires,” Complex Intell. Syst., vol. 7, no. 1, pp. 477–494, 2021, doi: 10.1007/s40747-020-00209-5.
[10] M. Mueter, F. Freiling, T. Holz, and J. Matthews, “A generic toolkit for converting web applications into high-interaction honeypots,” Univ. Mannheim, 2008, [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.5000&rep=rep1&type=pdf%5Cnpapers2://publication/uuid/3F63605B-8FF8-4A51-97F6-AF46226DD97C.
[11] D. W. Johnson et al., “Application of Medihoney Antibacterial Wound Gel for the Prevention,” Society, vol. 29, no. 2, pp. 303–309, 2009.
[12] J. Mack, Y.-H. (Frank) Hu, and M. A. Hoppa, “A Study of Existing Cross-Site Scripting Detection and Prevention Techniques Using XAMPP and VirtualBox,” Va. J. Sci., vol. 70, no. 3, p. 1, 2019, doi: 10.25778/bx6k-2285.
[13] D. Legay, A. Decan, and T. Mens, “On Package Freshness in Linux Distributions,” Proc. - 2020 IEEE Int. Conf. Softw. Maint. Evol. ICSME 2020, pp. 682–686, 2020, doi: 10.1109/ICSME46990.2020.00072.
[14] R. T. Gaddam and M. Nandhini, “An analysis of various snort based techniques to detect and prevent intrusions in networks: Proposal with code refactoring snort tool in Kali Linux environment,” Proc. Int. Conf. Inven. Commun. Comput. Technol. ICICCT 2017, no. Icicct, pp. 10–15, 2017, doi: 10.1109/ICICCT.2017.7975177.
[15] B. Korniyenko and L. Galata, “Implementation of the information resources protection based on the CentOS operating system,” 2019 IEEE 2nd Ukr. Conf. Electr. Comput. Eng. UKRCON 2019 - Proc., pp. 1007–1011, 2019, doi: 10.1109/UKRCON.2019.8879981.
[16] N. S. Sulaiman, A. Shafiq, and H. Ahmad, “Comparison of Operating System Performance Between Windows 10 and Linux Mint,” vol. 2, no. 1, pp. 92–102, 2021.
[17] lms.onnocenter.or.id, "Maltrail", 4 November 2018. https://lms.onnocenter.or.id/wiki/index.php/Maltrail.
[18] Cnbcindonesia.com, "Cerita Lengkap Bocornya 91 Juta Data Akun Tokopedia", 4 Mei 2020. https://www.cnbcindonesia.com/tech/20200504063854-37-155936/cerita-lengkap-bocornya-91-juta-data-akun-tokopedia.
[19] Kompas.com, "Data 279 Juta Penduduk Indonesia Diduga Bocor, Ini Kata Kominfo", 21 Mei 2021. https://www.kompas.com/tren/read/2021/05/21/113000365/data-279-juta-penduduk-indonesia-diduga-bocor-ini-kata-kominfo?page=all.
[20] Github (2021) Readme.md[stamparm/maltrail]. https://github.com/stamparm/maltrail/Readme.md
[21] Github (2021) Readme.md[shipcod3/honeypy]. https://github.com/shipcod3/honeypy/Readme.md