The Concept of Big Data Analysis for Maritime Information on Indonesian Waters using K-Means Algorithm

Main Article Content

Bita Parga Zen

Abstract

Abstract— Indonesia as an archipelagic country has a strategic geographical location, which is located between two continents and two oceans so that it has many advantages, especially in the maritime sector. Indonesia has a goal of becoming a World Maritime Axis that is responsible for ensuring the security and safety of services based on UNCLO S 1982. One way to achieve this goal is to process Big Data to produce useful maritime information . Data can be obtained from government agencies and international organizations and processed according to big data analytics so that it can be visualized information that can be used by various related parties.  The collected data can be clustered using the K-Means algorithm with the aim of dividing the data into several groups. This is especially useful for supporting Indonesia based on UNCLOS 1982 by providing information and ensuring the safety of Indonesian waters and being able to contribute to the Indonesian economy.

Article Details

How to Cite
Zen, B. (2021). The Concept of Big Data Analysis for Maritime Information on Indonesian Waters using K-Means Algorithm. Journal of Informatics Information System Software Engineering and Applications (INISTA), 3(2), 43-52. https://doi.org/10.20895/inista.v3i2.200
Section
Articles

References

[1] Yani, Yanyan & Montratama, Ian. (2018). “Indonesia Sebagai Poros Maritim Dunia: Suatu Tinjauan Geopolitik”. Jurnal Pertahanan & Bela Negara. 5. 10.33172/jpbh.v5i2.356.
[2] Afriansyah, Arie. 2015. “Kewenangan Negara Pantai Dalam Mengelola Wilayah Laut”. Jurnal Hukum dan Pembangunan Tahun ke-45 Oktober-Desember 2015.
[3] Hurwitz, J., Alan, N., Halper, F., dan Kaufman, M., 2013. Big Data For Dummies. [e-book] John Wiley & Sons, Inc.
[4] Bahga, Arshdeep and Madisetti, Vijay. 2019. “Big Data Science & Analytics: A Hands-On Approach”.
[5] Cholissodin, I., Riyandani, E. 2016. “Analisis Big Data” Fakultas Ilmu Komputer, Universitas Brawijaya, Malang.
[6] Karthik Kambatla, Giorgos Kollias, Vipin Kumar, Ananth Grama, Trends in big data analytics, Journal of Parallel and Distributed Computing, Volume 74, Issue 7, 2014, Pages 2561-2573, ISSN 0743-7315, https://doi.org/10.1016/j.jpdc.2014.01.003.
[7] Datamation. 2019. “Big Data 2019: Mining Data for Revenue“. QuinStreet, Inc.
[8] Use of Big Data in The Maritime Industry. 2018. Trelleborg Marine Systems and supported, Port Technology.
[9] Toba, Hapnes. (2015). Big Data: Menuju Evolusi Era Informasi Selanjutnya.
[10] Salahudin, Salahudin. (2019). Mengenal Big Data (BD) dan Big Data Analysis (BDA).
[11] G. Wei, Z. Luo and X. Yu, "Clustering Research on Ship Fault Phenomena Based on K-means Algorithm," 2019 Chinese Control And Decision Conference (CCDC), Nanchang, China, 2019, pp. 4412-4415, doi: 10.1109/CCDC.2019.8832666.
[12] https://www.marinetraffic.com/en/ais/home/centerx:117.8/centery:-4.5/zoom:6
[13] https://coast.noaa.gov/htdata/CMSP/AISDataHandler/2020/index.html