Model Decision Tree Forecasting Berbasis DHT22 pada Smart Hydroponic Microgreen

Main Article Content

Charis Fathul Hadi
Ratna Mustika Yasi
Andiko Prasetyo

Abstract

Sensor DHT22 diharuskan aktif selama 4 hari penuh, jika dilihat dari waktu rata-rata budidaya microgreen kacang hijau menggunakan smart hydroponic. Penggunaan sensor DHT22 dalam jangka waktu tertentu dapat mempengaruhi kestabilan jangka panjang dalam hal pembacaan suhu. Jika pembacaan DHT22 mulai tidak akurat, smart system tidak mampu bekerja maksimal. Peneliti mengusulkan sebuah sistem untuk menggantikan peran sensor tanpa mengurangi atau mengganggu kinerja dari smart system untuk mengurangi ketergantungan komponen elektronika seperti sensor suhu. Seiring kemajuan teknologi, terdapat salah satu model machine learning yang dapat diterapkan untuk menggantikan peran sensor yaitu prediksi suhu melalui forecasting. Algoritma forecasting yang digunakan adalah decision tree. Algoritma ini dipilih karena mampu memprediksi data hanya dengan satu jenis input data berupa waktu dengan proses pelatihan yang cukup cepat. Data latih dihasilkan dari perekaman data selama 4 hari pada smart hydroponic microgreen kacang hijau. Model akan dibuat menggunakan grid search cross validation dan feature scaling. Hasil penelitian menunjukkan channel 80 layak dipilih menjadi model prediksi. Prediksi suhu model decision tree forecasting menghasilkan nilai R-squared sebesar 0,870955 dan mean square error (MSE) sebesar 0,074171. Kedua nilai tersebut menunjukkan bahwa model cukup kuat dalam memprediksi suhu dan layak untuk diterapkan dalam memantau suhu smart hydroponic microgreen kacang hijau.

Article Details

How to Cite
Hadi, C., Yasi, R., & Prasetyo, A. (2024). Model Decision Tree Forecasting Berbasis DHT22 pada Smart Hydroponic Microgreen. Journal of Telecommunication Electronics and Control Engineering (JTECE), 6(1), 29-38. https://doi.org/10.20895/jtece.v6i1.1218
Section
Articles

References

[1] R. M. Sembiring, “Perancangan dan Pembuatan Sistem Pengendalian Pengering Cabai Menggunakan Sensor DHT22 Berbasis Arduino Uno,” 2019.
[2] Nurussa’adah, S. N. Sari, T. Rohman, M. Alfanny, and A. Wicaksono, “Design and Build an Environmental Conditioning System on a Smart Growth Box for Microgreens,” in 2022 11th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), 2022, pp. 123–128.
[3] A. Prasetyo, “Implementasi Sistem Hidroponik Cerdas Pakan Ternak Jagung Menggunakan ESP32,” Transm. J. Ilm. Tek. Elektro, vol. 25, no. 1, 2022.
[4] T. Liu, DHT22 Aosong Electronics Co., vol. 22. 2015.
[5] A. Amalia, H. R. Fajrin, and A. S. Wibowo, “Thermohygrometer Dengan Penyimpanan Data Untuk Monitoring Kamar Bedah,” Med. Tek. J. Tek. Elektromedik Indones, vol. 2, no. 1, 2020.
[6] N. Papakonstantinou, J. Savolainen, J. Koistinen, A. Aikala, and V. Vyatkin, “District Heating Temperature Control Algorithm Based on Short Term Weather Forecast and Consumption Predictions,” in 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), 2016, pp. 1–8.
[7] P. Mahawar and V. Shrivastava, “Analysing And Forecasting Rajasthan’s Agriculture Productivity Using Association Rule Mining And ARIMA Modelling,” in 2018 4th International Conference on Computing Communication and Automation, ICCCA 2018, 2018, pp. 1–4, doi: 10.1109/CCAA.2018.8777574.
[8] J. K. Sethi and M. Mittal, “Analysis Of Air Quality Using Univariate And Multivariate Time Series Models,” in Proceedings of the Confluence 2020 - 10th International Conference on Cloud Computing, Data Science and Engineering, 2020, pp. 823–827, doi: 10.1109/Confluence47617.2020.9058303.
[9] K. Khalili-Damghani, F. Abdi, and S. Abolmakarem, “Hybrid Soft Computing Approach Based On Clustering, Rule Mining, And Decision Tree Analysis For Customer Segmentation Problem: Real Case Of Customer-Centric Industries,” Appl. Soft Comput., vol. 73, pp. 816–828, 2018.
[10] M. RL and A. K. Mishra, “Measuring Financial Performance Of Indian Manufacturing Firms: Application Of Decision Tree Algorithms,” Meas. Bus. Excell., vol. 26, no. 3, pp. 288–307, 2022.
[11] W. W. Sakti, K. Anam, S. B. Utomo, B. Marhaenanto, and S. Nahela, “Artificial Intelligence IoT Based EEG Application Using Deep Learning For Movement Classification,” in 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2021, pp. 192–196.
[12] A. Taufiqurrahman, A. G. Putrada, and F. Dawani, “Decision Tree Regression with AdaBoost Ensemble Learning for Water Temperature Forecasting in Aquaponic Ecosystem,” in 6th International Conference on Interactive Digital Media, ICIDM 2020, 2020, no. Icidm, doi: 10.1109/ICIDM51048.2020.9339669.
[13] A. R. Barron, “Predicted Squared Error: A Criterion For Automatic Model Selection,” in Self-organizing methods in modeling, CRC Press, 2020, pp. 87–103.
[14] D. A. S. Hartanti, Y. Puspaningrum, and A. I. Yuliana, “Improving The Skills Of The Residents Of The Abadi Megah Regency Jombang In Microgreens Cultivation Techniques As An Effort To Improve Family Food Security,” Community Empower., vol. 7, no. 9, pp. 1562–1567, 2022.
[15] Pertanian.go.id, “Budidaya Kacang Hijau,” 2019. http://cybex.pertanian.go.id/mobile/artikel/75856/TEKNIK-BUDIDAYA-KACANG-HIJAU/ (accessed May 12, 2023).
[16] B. Marhaenanto, “Rancangan Sistem Pengendali Suhu Dan Kelembaban Berbasis Mikrokontroler Pada Ruang Pertumbuhan Fodder (Fodder Growth Chamber),” J. Agroteknologi, vol. 15, no. 02, 2021.
[17] M. T. Islam Juel and M. S. Ahmed, “A Smart Auto-Balanced System For Incubation Process,” in 1st International Conference on Robotics, Electrical and Signal Processing Techniques, ICREST 2019, 2019, pp. 564–569, doi: 10.1109/ICREST.2019.8644295.
[18] S. N. Khine and Z. Tun, “Mongodb On Cloud For Weather Data (Temperature And Humidity) In Sittway,” 2020, doi: 10.1109/ICCA49400.2020.9022825.
[19] A. Faroqi, M. R. Efendi, D. T. Ismail, and W. Darmalaksana, “Design Of Arduino Uno Based Duck Egg Hatching Machine With Sensor DHT22 And PIR Sensor,” in Proceedings - 2020 6th International Conference on Wireless and Telematics, ICWT 2020, 2020, pp. 14–17, doi: 10.1109/ICWT50448.2020.9243640.
[20] A. W. Bartlow et al., “Forecasting Zoonotic Infectious Disease Response To Climate Change: Mosquito Vectors And A Changing Environment,” Vet. Sci., vol. 6, no. 2, p. 40, 2019.
[21] A. Al-Fugara, M. Ahmadlou, A. R. Al-Shabeeb, S. AlAyyash, H. Al-Amoush, and R. Al-Adamat, “Spatial Mapping Of Groundwater Springs Potentiality Using Grid Search-Based And Genetic Algorithm-Based Support Vector Regression,” Geocarto Int., vol. 37, no. 1, pp. 284–303, 2022, doi: 10.1080/10106049.2020.1716396.
[22] L. Yao, Z. Fang, Y. Xiao, J. Hou, and Z. Fu, “An intelligent fault diagnosis method for lithium battery systems based on grid search support vector machine,” Energy, vol. 214, p. 118866, 2021.
[23] R. M. da S. P. Vieira et al., “Land Degradation Mapping In The MATOPIBA Region (Brazil) Using Remote Sensing Data And Decision-Tree Analysis,” Sci. Total Environ., vol. 782, p. 146900, 2021.
[24] A. T. Nurani, A. Setiawan, and B. Susanto, “Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma,” J. Sains dan Edukasi Sains, vol. 6, no. 1, pp. 34–43, 2023.
[25] T. Plieninger, M. Torralba, T. Hartel, and N. Fagerholm, “Perceived Ecosystem Services Synergies, Trade-Offs, And Bundles In European High Nature Value Farming Landscapes,” Landsc. Ecol., vol. 34, pp. 1565–1581, 2019.
[26] A. Abyad, “The Pareto Principle: Applying the 80/20 Rule to Your Business,” Middle East J., 2020.