Characteristics of UHF Propagation Channels Due to the Impact of Vegetation on WSN in The Tropical Forests
Main Article Content
Abstract
Penggunaan komunikasi nirkabel dalam Wireless Sensor Network pada smart garden memerlukan informasi tentang besar redaman yang disebabkan oleh tumbuhan. Oleh karena itu, dilakukan pengukuran Received Signal Strength Indicator (RSSI) yang diterima oleh perangkat XBee S2C di area Hutan Bambu, Surabaya, untuk beberapa panjang vegetation depth dan tinggi antena yang berbeda. Dari hasil pengukuran diketahui bahwa tidak terdapat perbedaan yang signifikan antara RSSI untuk tinggi antena 1 m dan 2 m, sedangkan RSSI yang lebih baik diperoleh pada antena dengan tinggi 3 m. Antena yang dipergunakan adalah antena monopole vertikal untuk frekuensi 2,4 GHz. Hal ini disebabkan bahwa pada tinggi antena 3 m jumlah tumbuhan yang menjadi penghalang lebih sedikit daripada pada antena 1 m dan 2 m. Dari hasil pengukuran juga diketahui bahwa dengan tinggi antena tersebut paket data dapat diterima hingga panjang vegetation depth 80 m. Kemudian redaman yang dihasilkan dari perhitungan menyebutkan bahwa trend yang dihasilkan sesuai dengan trend redaman dengan Model Weissberger, ITU-R, dan FITU-R, tetapi dengan nilai yang lebih tinggi. Hal ini bisa disebabkan karena perbedaan metode pengukuran, lokasi, halangan, dan iklim dan cuaca yang berbeda. Untuk memprediksikan redaman pada jarak kedalaman vegetasi tertentu, maka berdasarkan hasil perhitungan redaman dibuatlah suatu persamaan linear perhitungan redaman sebagai fungsi jarak.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
[2] I. Kurniawati, E. Mahardika, and I. C. Septiawan, “The Preparations for Designing the LoRa LPWAN Based on the Regulations,” in 2020 IEEE International Conference on Communication, Networks and Satellite, Comnetsat 2020 - Proceedings, 2020. doi: 10.1109/Comnetsat50391.2020.9328950.
[3] J. A. Azevedo and F. E. Santos, “A model to estimate the path loss in areas with foliage of trees,” AEU - International Journal of Electronics and Communications, vol. 71, pp. 157–161, Jan. 2017, doi: 10.1016/j.aeue.2016.10.018.
[4] I. Kurniawati, G. Hendrantoro, Wirawan, and M. Taufik, “Statistical modeling of low-latitude long-distance HF ionospheric multi-mode channels,” Progress In Electromagnetics Research M, vol. 64, 2018.
[5] N. A. binti Masadan, M. H. Habaebi, and S. H. Yusoff, “Long range channel characteristics through foliage,” Bulletin of Electrical Engineering and Informatics, vol. 8, no. 3, pp. 941–950, Sep. 2019.
[6] J. R. Balbin, R. G. Garcia, F. L. Valiente, and Y. Hirota, “Detection and Localization for Buried and Alive Human Body After Mudslides Using Pulse Sensor and Force Sensing Resistor with XBee Technology and Global Positioning System to Support Rescue Operations,” in 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag: IEEE, Nov. 2019.
[7] R. Fitriani, “Kajian Kekuatan Sinyal Radio (Rssi) Xbee dalam Rangka Pemasangan Landslide Early Warning System (Lews) di Kabupaten Garut, Tasikmalaya dan Majalengka,” Alami, vol. 3, no. 2, Nov. 2019.
[8] S. Nathasa and S. M. Daud, “A Review on Computer Vision Technology for Monitoring Poultry Farm – Application, Hardware, and Software,” IEEE Access, vol. PP, no. 99, Dec. 2020.
[9] B. Gazal, K. Khateb, and K. Chahine, “A Poultry Farming Control System Using a ZigBee-based Wireless Sensor Network,” International Journal of Control and Automation, vol. 10, no. 9, pp. 191–198, Sep. 2017.
[10] T. Ojha, S. Misra, and N. S. Raghuwanshi, “Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges,” Comput Electron Agric, vol. 118, pp. 66–84, Oct. 2015.
[11] D. L. Ndzi et al., “VEGETATION ATTENUATION MEASUREMENTS AND MODELING IN PLANTATIONS FOR WIRELESS SEN-SOR NETWORK PLANNING,” Progress In Electromagnetics Research B, vol. 36, pp. 283–301, 2012, doi: 10.2528/PIERB11091908.
[12] J. Bauer and N. Aschenbruck, “Towards a Low-cost RSSI-based Crop Monitoring,” ACM Transactions on Internet of Things, vol. 1, no. 4, pp. 21–26, Jun. 2020.
[13] Z. Gao, W. Li, Y. Tian, F. Pang, W. Chao, and Ju. Ni, “Wireless Channel Propagation Characteristics and Modeling Research in Rice Field Sensor Networks _ Enhanced Reader,” Sensors, vol. 18, no. 3116, pp. 1–18, Sep. 2018, Accessed: Aug. 07, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/18/9/3116
[14] A. S. Adewumi and O. Olabisi, “Characterization and modeling of vegetation effects on UHF propagation through a long-forested channel,” Progress in Electromagnetics Research Letters, vol. 73, pp. 9–16, 2018, doi: 10.2528/pierl17092004.
[15] E. Dounias, “Rainforest, Tropical,” in The International Encyclopedia of Anthropology, vol. 1, H. Callan and S. Coleman, Eds., John Wiley and Son, 2018, pp. 1–3.
[16] S. Ozuomba, E. H. Johnson, and E. N. Udoiwod, “Application of Weissberger Model for Characterizing the Propagation Loss in a Gliricidia sepium Arboretum,” Universal Journal of Communications and Network, vol. 6, no. 2, pp. 18–23, Dec. 2018, doi: 10.13189/ujcn.2018.060202.
[17] Z. I. Rizman, K. Jusof, S. S. Rais, H. H. H. Bakar, and G. K. S. Nair, “Microwave Signal Propagation on Oil Palm tree: Measurements and Analysis,” International Journal on Smart Sensing and Intelligent Systems, vol. 4, no. 11, pp. 388–401, Aug. 2011.
[18] T. Ojha, S. Misra, and N. S. Raghuwanshi, “Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges,” Comput Electron Agric, vol. 118, pp. 66–84, Oct. 2015, doi: 10.1016/J.COMPAG.2015.08.011.
[19] N. T. Le and W. Benjapolakui, “Received signal strength data of ZigBee technology for on-street environment at 2.4 GHz band and the interruption of vehicle to link quality,” Data Brief, vol. 22, pp. 1036–1043, Feb. 2020.
[20] I. Magdalena, G. R. Andadari, and D. E. Reeve, “An integrated study of wave attenuation by vegetation,” Wave Motion, vol. 110, Mar. 2022.
[21] R. Prodanovic, D. Rancic, I. Vulic, and N. Zoric, “Wireless Sensor Network in Agriculture: Model of Cyber Security,” Sensors, vol. 20, no. 23, Dec. 2020.
[22] Digi International, “Signal strength and the RSSI pin,” https://www.digi.com/resources/documentation/Digidocs/90001456-13/concepts/c_rssi_pin_and_signal_strength.htm.
[23] W. Stallings, Komunikasi dan Jaringan Nirkabel , 2nd ed. Jakarta: Erlangga, 2005.
[24] M. A. Weissberger, “An Initial Critical Summary of models for Predicting the attenuation of radio waves by trees,” Electromagnetic Compatibility Analysis Centre, vol. Report ESD-TR, pp. 81–101, Jun. 1982.
[25] H. Maisarah Rahim, C. Yen Leow, and T. Abd Rahman, “Millimeter Wave Propagation Through Foliage: Comparison of Models,” in 2015 IEEE 12th Malaysia International Conference on Communications (MICC), Kuching, 2015, pp. 236–240. Accessed: Sep. 29, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/7725440
[26] D. Kuramoto, T. Tokunou, and T. Hamasaki, “Vegetation Effect in Paddy Field for A Wireless Sensor Network,” in 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 2018. Accessed: Nov. 20, 2022. [Online]. Available: 10.1109/USNC-URSI.2018.8602773
[27] ITU-R, “Method for the prediction of the performance of HF circuits,” vol. 12, p. 8, 2012, doi: ITU-R P.533-12.
[28] M. S. H. Al Salameh, “Lateral ITU-R Foliage and Maximum attenuation models Combined with Relevant Propagation Models for Forest at the VHF and UHF bands,” Journal: International Journal of Networking and Communication, vol. 1, p. 55, Jul. 2014, doi: DOI: 01.IJNC.2014.1.7.