IoT-Based Dual Axis Solar Tracker Design on Monocrystalline Photovoltaic for Hydroponic Plant Water Pump Power Supply
Main Article Content
Abstract
Hydroponic growing media requires a continuous flow of water usually powered by PLN electricity. If the electricity supply is interrupted, the supply of plant nutrients will be disrupted. The utilization of renewable energy, such as photovoltaic, is an alternative solution. The efficiency of energy conversion is highly dependent on the placement of photovoltaic towards the position of the sun. Solar trackers that direct solar panels to follow the movement of the sun can increase the efficiency of photovoltaic. This research compares the performance of solar panel systems with and without solar trackers and tests the working duration of batteries for hydroponic water pump power supply. The Internet of Things (IoT) concept encompasses the idea of expanding the network of internet-connected devices to control and monitor devices remotely. The results show that the panel with the tracker produces an average voltage of 13.87 Volts and a current of 0.85 Amperes higher than without the tracker (13.36 Volts and 0.63 Amperes), with an efficiency of about 2% between the solar panel using the tracker and the one not using the tracker system. In addition, the battery can work for 12 hours to power the hydroponic water pump without the power obtained by the solar panel. For further development, it is recommended to use more advanced Internet of Things (IoT) technology and improved methods to increase the efficiency of the tracker system
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
[2] L. S. Setiawan, David, Hamzah Eteruddin, “Sistem Pembangkit Listrik Tenaga Surya untuk Tanaman Hidroponik,” Teknik, vol. 14, no. 2, pp. 208–215, 2020.
[3] M. Ali and J. Windarta, “Pemanfaatan Energi Matahari Sebagai Energi Bersih yang Ramah Lingkungan,” J. Energi Baru dan Terbarukan, vol. 1, no. 2, pp. 68–77, 2020, doi: 10.14710/jebt.2020.10059.
[4] H. Romadhon and B. Budiyanto, “Pemanfaatan Intensitas Radiasi Cahaya Lampu dengan Reflektor Panel Surya sebagai Energi Harvesting,” Resist. (Elektronika Kendali Telekomun. Tenaga List. Komputer), vol. 3, no. 2, p. 45, 2020, doi: 10.24853/resistor.3.2.45-56.
[5] M. A. Rahmanta, A. Syamsuddin, F. Tanbar, and ..., “Analisis Perkembangan Teknologi Modul Photovoltaic (PV) Untuk Meningkatan Penetrasi Pusat Listrik Tenaga Surya (PLTS) Di Indonesia,” J. Offshore Oil, Prod. Facil. Renew. Energy, vol. 7, no. 1, pp. 22–33, 2023, [Online]. Available: https://ejournal.up45.ac.id/index.php/Jurnal_OFFSHORE/article/view/1509%0Ahttps://ejournal.up45.ac.id/index.php/Jurnal_OFFSHORE/article/download/1509/891
[6] D. Christian, D. Budhi Santoso, and R. Rahmadewi, “Implementasi Digital Image Processing Sebagai Pendeteksi Posisi Matahari Pada Perancangan Dual Axis Solar Tracker,” Teknokom, vol. 6, no. 2, pp. 116–122, 2023, doi: 10.31943/teknokom.v6i2.150.
[7] A. I. Saputra, I. Hidayat, and W. Priharti, “Perancangan Single Axis Solar Tracker Menggunakan Fuzzy Logic Berbasis Arduino Guna Mengoptimalkan Output Daya Pada Panel Surya,” e-Proceeding Eng., vol. 9, no. 5, pp. 2225–2233, 2022.
[8] R. Komalasari, “Manfaat Aplikasi Teknologi IoT di Masa Pandemi Covid-19 : Studi Eksploratif,” Tematik, vol. 7, no. 2, pp. 196–210, 2020, doi: 10.38204/tematik.v7i2.469.
[9] S. Samsurizal, M. T. Aji, and K. T. M, “Pemanfaatan Tenaga Surya Pada Photovoltaic Jenis Polycristaline Untuk Catu Daya Tanaman Hidroponik,” Energi & Kelistrikan, vol. 13, no. 1, pp. 58–66, 2021, doi: 10.33322/energi.v13i1.984.
[10] D. Suryana and M. M. Ali, “The Effect Of Temperature On Voltage Produced By Monocrystalline Solar Panel (Case Study : Baristand Industri Surabaya),” J. Teknol. Proses dan Inov. Ind., vol. 2, no. 1, pp. 49–52, 2016.
[11] A. Zulfia, C. A. Asha, D. Pradana, R. Rifandika, M. B. Ginting, and N. Harahap, “Sistem Papan Monitoring Penggunaan Kelas dan Peralatan Elektronik Terintegrasi Internet of Things,” J. Inform. Dan Peranc. Sist., vol. 5, no. 1, pp. 45–54, 2023.
[12] Muliadi, A. Imran, and M. Rasul, “Pengembangan Tempat Sampah Pintar Menggunakan Esp32,” J. Media Elektr., vol. 17, no. 2, pp. 2721–9100, 2020, [Online]. Available: https://ojs.unm.ac.id/mediaelektrik/article/view/14193
[13] D. Wijayanto, S. I. Haryudo, T. Wrahatnolo, and ..., “Rancang Bangun Monitoring Arus Dan Tegangan Pada Plts Sistem On Grid Berbasis Internet Of Things (IoT) Menggunakan Aplikasi Telegram,” J. Tek. …, pp. 447–453, 2022, [Online]. Available: https://ejournal.unesa.ac.id/index.php/JTE/article/view/49288%0Ahttps://ejournal.unesa.ac.id/index.php/JTE/article/download/49288/41004
[14] N. Soedjarwanto, “Prototipe Smart Dor Lock Menggunakan Motor Stepper Berbasis Iot (Internet Of Things),” Electrician, vol. 15, no. 2, pp. 73–82, 2021, doi: 10.23960/elc.v15n2.2167.
[15] I. W. Nursatriya, S. Hariyadi, L. D. Kusumayati, and P. P. Surabaya, “Rancangan Monitoring Arus Dan Tegangan Lampu Penerangan Jalan Umum Berbasis IoT Menggunakan NodeMCU Via Aplikasi Blynk,” Pros. SNITP, vol. 6, no. 1, pp. 1–6, 2022.
[16] A. Wisnu, A. Kristanto, S. T. Elektro, F. Teknik, and U. N. Surabaya, “Pemodelan Automatic Transfer Switch (ATS) Pada System Smartgrid Pembangkit Photovoltaic,” J. Tek. Elektro, vol. 11, pp. 351–360, 2022.
[17] K. W. Fauzi, T. Arfianto, and N. Taryana, “Perancangan dan Realisasi Solar Tracking System Untuk Peningkatan Efisiensi Panel Surya Menggunakan Arduino Uno,” TELKA - Telekomun. Elektron. Komputasi dan Kontrol, vol. 4, no. 1, pp. 63–74, 2018, doi: 10.15575/telka.v4n1.63-74